![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgt1 | Structured version Visualization version GIF version |
Description: The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.) |
Ref | Expression |
---|---|
mulgt1 | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 474 | . . . . 5 ⊢ ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < 𝐴) | |
2 | 1 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < 𝐴)) |
3 | 0lt1 10742 | . . . . . . . . 9 ⊢ 0 < 1 | |
4 | 0re 10232 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
5 | 1re 10231 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
6 | lttr 10306 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴)) | |
7 | 4, 5, 6 | mp3an12 1563 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴)) |
8 | 3, 7 | mpani 714 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (1 < 𝐴 → 0 < 𝐴)) |
9 | 8 | adantr 472 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐴 → 0 < 𝐴)) |
10 | ltmul2 11066 | . . . . . . . . . . 11 ⊢ ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 ↔ (𝐴 · 1) < (𝐴 · 𝐵))) | |
11 | 10 | biimpd 219 | . . . . . . . . . 10 ⊢ ((1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵))) |
12 | 5, 11 | mp3an1 1560 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵))) |
13 | 12 | exp32 632 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (0 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵))))) |
14 | 13 | impcom 445 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵)))) |
15 | 9, 14 | syld 47 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (1 < 𝐴 → (1 < 𝐵 → (𝐴 · 1) < (𝐴 · 𝐵)))) |
16 | 15 | impd 446 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → (𝐴 · 1) < (𝐴 · 𝐵))) |
17 | ax-1rid 10198 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) | |
18 | 17 | adantr 472 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 1) = 𝐴) |
19 | 18 | breq1d 4814 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 · 1) < (𝐴 · 𝐵) ↔ 𝐴 < (𝐴 · 𝐵))) |
20 | 16, 19 | sylibd 229 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 𝐴 < (𝐴 · 𝐵))) |
21 | 2, 20 | jcad 556 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → (1 < 𝐴 ∧ 𝐴 < (𝐴 · 𝐵)))) |
22 | remulcl 10213 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
23 | lttr 10306 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → ((1 < 𝐴 ∧ 𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵))) | |
24 | 5, 23 | mp3an1 1560 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → ((1 < 𝐴 ∧ 𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵))) |
25 | 22, 24 | syldan 488 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 𝐴 < (𝐴 · 𝐵)) → 1 < (𝐴 · 𝐵))) |
26 | 21, 25 | syld 47 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((1 < 𝐴 ∧ 1 < 𝐵) → 1 < (𝐴 · 𝐵))) |
27 | 26 | imp 444 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 class class class wbr 4804 (class class class)co 6813 ℝcr 10127 0cc0 10128 1c1 10129 · cmul 10133 < clt 10266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 |
This theorem is referenced by: mulgt1d 11152 addltmul 11460 uz2mulcl 11959 addltmulALT 29614 |
Copyright terms: Public domain | W3C validator |