Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mullimc Structured version   Visualization version   GIF version

Theorem mullimc 39249
 Description: Limit of the product of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
mullimc.f 𝐹 = (𝑥𝐴𝐵)
mullimc.g 𝐺 = (𝑥𝐴𝐶)
mullimc.h 𝐻 = (𝑥𝐴 ↦ (𝐵 · 𝐶))
mullimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
mullimc.c ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
mullimc.x (𝜑𝑋 ∈ (𝐹 lim 𝐷))
mullimc.y (𝜑𝑌 ∈ (𝐺 lim 𝐷))
Assertion
Ref Expression
mullimc (𝜑 → (𝑋 · 𝑌) ∈ (𝐻 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝑌(𝑥)

Proof of Theorem mullimc
Dummy variables 𝑎 𝑏 𝑒 𝑓 𝑦 𝑧 𝑤 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 23545 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 mullimc.x . . . 4 (𝜑𝑋 ∈ (𝐹 lim 𝐷))
31, 2sseldi 3581 . . 3 (𝜑𝑋 ∈ ℂ)
4 limccl 23545 . . . 4 (𝐺 lim 𝐷) ⊆ ℂ
5 mullimc.y . . . 4 (𝜑𝑌 ∈ (𝐺 lim 𝐷))
64, 5sseldi 3581 . . 3 (𝜑𝑌 ∈ ℂ)
73, 6mulcld 10004 . 2 (𝜑 → (𝑋 · 𝑌) ∈ ℂ)
8 simpr 477 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝑤 ∈ ℝ+)
93adantr 481 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝑋 ∈ ℂ)
106adantr 481 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → 𝑌 ∈ ℂ)
11 mulcn2 14260 . . . . 5 ((𝑤 ∈ ℝ+𝑋 ∈ ℂ ∧ 𝑌 ∈ ℂ) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤))
128, 9, 10, 11syl3anc 1323 . . . 4 ((𝜑𝑤 ∈ ℝ+) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤))
13 mullimc.b . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
14 mullimc.f . . . . . . . . . . . . . . . . 17 𝐹 = (𝑥𝐴𝐵)
1513, 14fmptd 6340 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝐴⟶ℂ)
1614, 13dmmptd 5981 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 = 𝐴)
17 limcrcl 23544 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
182, 17syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1918simp2d 1072 . . . . . . . . . . . . . . . . 17 (𝜑 → dom 𝐹 ⊆ ℂ)
2016, 19eqsstr3d 3619 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℂ)
2118simp3d 1073 . . . . . . . . . . . . . . . 16 (𝜑𝐷 ∈ ℂ)
2215, 20, 21ellimc3 23549 . . . . . . . . . . . . . . 15 (𝜑 → (𝑋 ∈ (𝐹 lim 𝐷) ↔ (𝑋 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎))))
232, 22mpbid 222 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 ∈ ℂ ∧ ∀𝑎 ∈ ℝ+𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)))
2423simprd 479 . . . . . . . . . . . . 13 (𝜑 → ∀𝑎 ∈ ℝ+𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎))
2524r19.21bi 2927 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ ℝ+) → ∃𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎))
2625adantrr 752 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎))
27 mullimc.c . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐶 ∈ ℂ)
28 mullimc.g . . . . . . . . . . . . . . . . 17 𝐺 = (𝑥𝐴𝐶)
2927, 28fmptd 6340 . . . . . . . . . . . . . . . 16 (𝜑𝐺:𝐴⟶ℂ)
3029, 20, 21ellimc3 23549 . . . . . . . . . . . . . . 15 (𝜑 → (𝑌 ∈ (𝐺 lim 𝐷) ↔ (𝑌 ∈ ℂ ∧ ∀𝑏 ∈ ℝ+𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))))
315, 30mpbid 222 . . . . . . . . . . . . . 14 (𝜑 → (𝑌 ∈ ℂ ∧ ∀𝑏 ∈ ℝ+𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
3231simprd 479 . . . . . . . . . . . . 13 (𝜑 → ∀𝑏 ∈ ℝ+𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))
3332r19.21bi 2927 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ ℝ+) → ∃𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))
3433adantrl 751 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))
35 reeanv 3097 . . . . . . . . . . 11 (∃𝑒 ∈ ℝ+𝑓 ∈ ℝ+ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) ↔ (∃𝑒 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∃𝑓 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
3626, 34, 35sylanbrc 697 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑒 ∈ ℝ+𝑓 ∈ ℝ+ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
37 ifcl 4102 . . . . . . . . . . . . . 14 ((𝑒 ∈ ℝ+𝑓 ∈ ℝ+) → if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ+)
38373ad2ant2 1081 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ+)
39 nfv 1840 . . . . . . . . . . . . . . 15 𝑧(𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+))
40 nfv 1840 . . . . . . . . . . . . . . 15 𝑧(𝑒 ∈ ℝ+𝑓 ∈ ℝ+)
41 nfra1 2936 . . . . . . . . . . . . . . . 16 𝑧𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)
42 nfra1 2936 . . . . . . . . . . . . . . . 16 𝑧𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)
4341, 42nfan 1825 . . . . . . . . . . . . . . 15 𝑧(∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))
4439, 40, 43nf3an 1828 . . . . . . . . . . . . . 14 𝑧((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
45 simp11l 1170 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝜑)
46 simp1rl 1124 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → 𝑎 ∈ ℝ+)
47463ad2ant1 1080 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑎 ∈ ℝ+)
4845, 47jca 554 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝜑𝑎 ∈ ℝ+))
49 simp12 1090 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
50 simp13l 1174 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎))
5148, 49, 50jca31 556 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)))
52 simp1r 1084 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎))
53 simp2 1060 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐴)
54 simp3l 1087 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐷)
55 simplll 797 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)) → 𝜑)
56553ad2ant1 1080 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝜑)
57 simp1lr 1123 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
58 simp3r 1088 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))
59 simp1l 1083 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝜑)
60 simp2 1060 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑧𝐴)
6120sselda 3583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧𝐴) → 𝑧 ∈ ℂ)
6259, 60, 61syl2anc 692 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑧 ∈ ℂ)
6359, 21syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝐷 ∈ ℂ)
6462, 63subcld 10336 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (𝑧𝐷) ∈ ℂ)
6564abscld 14109 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) ∈ ℝ)
66 rpre 11783 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 ∈ ℝ+𝑒 ∈ ℝ)
6766ad2antrl 763 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) → 𝑒 ∈ ℝ)
68673ad2ant1 1080 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑒 ∈ ℝ)
69 rpre 11783 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑓 ∈ ℝ+𝑓 ∈ ℝ)
7069ad2antll 764 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) → 𝑓 ∈ ℝ)
71703ad2ant1 1080 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → 𝑓 ∈ ℝ)
7268, 71ifcld 4103 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ)
73 simp3 1061 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))
74 min1 11963 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑒)
7568, 71, 74syl2anc 692 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑒)
7665, 72, 68, 73, 75ltletrd 10141 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) < 𝑒)
7756, 57, 53, 58, 76syl211anc 1329 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < 𝑒)
7854, 77jca 554 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒))
79 rsp 2924 . . . . . . . . . . . . . . . . . 18 (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)))
8052, 53, 78, 79syl3c 66 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)
8151, 80syld3an1 1369 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎)
82 simp1l 1083 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → 𝜑)
8382, 46jca 554 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → (𝜑𝑎 ∈ ℝ+))
84 simp2 1060 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
85 simp3r 1088 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))
8683, 84, 85jca31 556 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → (((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
87 simp1r 1084 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))
88 simp2 1060 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐴)
89 simp3l 1087 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝑧𝐷)
90 simplll 797 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) → 𝜑)
91903ad2ant1 1080 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → 𝜑)
92 simp1lr 1123 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑒 ∈ ℝ+𝑓 ∈ ℝ+))
93 simp3r 1088 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))
94 min2 11964 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑒 ∈ ℝ ∧ 𝑓 ∈ ℝ) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑓)
9568, 71, 94syl2anc 692 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → if(𝑒𝑓, 𝑒, 𝑓) ≤ 𝑓)
9665, 72, 71, 73, 95ltletrd 10141 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ 𝑧𝐴 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → (abs‘(𝑧𝐷)) < 𝑓)
9791, 92, 88, 93, 96syl211anc 1329 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘(𝑧𝐷)) < 𝑓)
9889, 97jca 554 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓))
99 rsp 2924 . . . . . . . . . . . . . . . . . 18 (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
10087, 88, 98, 99syl3c 66 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑎 ∈ ℝ+) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+)) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)
10186, 100syl3an1 1356 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)
10281, 101jca 554 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))
1031023exp 1261 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))))
10444, 103ralrimi 2951 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
105 breq2 4617 . . . . . . . . . . . . . . . . 17 (𝑦 = if(𝑒𝑓, 𝑒, 𝑓) → ((abs‘(𝑧𝐷)) < 𝑦 ↔ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)))
106105anbi2d 739 . . . . . . . . . . . . . . . 16 (𝑦 = if(𝑒𝑓, 𝑒, 𝑓) → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) ↔ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓))))
107106imbi1d 331 . . . . . . . . . . . . . . 15 (𝑦 = if(𝑒𝑓, 𝑒, 𝑓) → (((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) ↔ ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))))
108107ralbidv 2980 . . . . . . . . . . . . . 14 (𝑦 = if(𝑒𝑓, 𝑒, 𝑓) → (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) ↔ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))))
109108rspcev 3295 . . . . . . . . . . . . 13 ((if(𝑒𝑓, 𝑒, 𝑓) ∈ ℝ+ ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < if(𝑒𝑓, 𝑒, 𝑓)) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
11038, 104, 109syl2anc 692 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) ∧ (𝑒 ∈ ℝ+𝑓 ∈ ℝ+) ∧ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
1111103exp 1261 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ((𝑒 ∈ ℝ+𝑓 ∈ ℝ+) → ((∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))))
112111rexlimdvv 3030 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → (∃𝑒 ∈ ℝ+𝑓 ∈ ℝ+ (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑒) → (abs‘((𝐹𝑧) − 𝑋)) < 𝑎) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑓) → (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))))
11336, 112mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
114113adantlr 750 . . . . . . . 8 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
1151143adant3 1079 . . . . . . 7 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
116 nfv 1840 . . . . . . . . . . 11 𝑧(((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+)
117 nfra1 2936 . . . . . . . . . . 11 𝑧𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))
118116, 117nfan 1825 . . . . . . . . . 10 𝑧((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
119 simp1l 1083 . . . . . . . . . . . . . . 15 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) → 𝜑)
120119ad2antrr 761 . . . . . . . . . . . . . 14 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → 𝜑)
1211203ad2ant1 1080 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → 𝜑)
122 simp2 1060 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → 𝑧𝐴)
123 nfv 1840 . . . . . . . . . . . . . . . . 17 𝑥(𝜑𝑧𝐴)
124 mullimc.h . . . . . . . . . . . . . . . . . . . 20 𝐻 = (𝑥𝐴 ↦ (𝐵 · 𝐶))
125 nfmpt1 4707 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥𝐴 ↦ (𝐵 · 𝐶))
126124, 125nfcxfr 2759 . . . . . . . . . . . . . . . . . . 19 𝑥𝐻
127 nfcv 2761 . . . . . . . . . . . . . . . . . . 19 𝑥𝑧
128126, 127nffv 6155 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑧)
129 nfmpt1 4707 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝑥𝐴𝐵)
13014, 129nfcxfr 2759 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐹
131130, 127nffv 6155 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐹𝑧)
132 nfcv 2761 . . . . . . . . . . . . . . . . . . 19 𝑥 ·
133 nfmpt1 4707 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝑥𝐴𝐶)
13428, 133nfcxfr 2759 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐺
135134, 127nffv 6155 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐺𝑧)
136131, 132, 135nfov 6630 . . . . . . . . . . . . . . . . . 18 𝑥((𝐹𝑧) · (𝐺𝑧))
137128, 136nfeq 2772 . . . . . . . . . . . . . . . . 17 𝑥(𝐻𝑧) = ((𝐹𝑧) · (𝐺𝑧))
138123, 137nfim 1822 . . . . . . . . . . . . . . . 16 𝑥((𝜑𝑧𝐴) → (𝐻𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
139 eleq1 2686 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
140139anbi2d 739 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝜑𝑥𝐴) ↔ (𝜑𝑧𝐴)))
141 fveq2 6148 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝐻𝑥) = (𝐻𝑧))
142 fveq2 6148 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
143 fveq2 6148 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
144142, 143oveq12d 6622 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → ((𝐹𝑥) · (𝐺𝑥)) = ((𝐹𝑧) · (𝐺𝑧)))
145141, 144eqeq12d 2636 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → ((𝐻𝑥) = ((𝐹𝑥) · (𝐺𝑥)) ↔ (𝐻𝑧) = ((𝐹𝑧) · (𝐺𝑧))))
146140, 145imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (((𝜑𝑥𝐴) → (𝐻𝑥) = ((𝐹𝑥) · (𝐺𝑥))) ↔ ((𝜑𝑧𝐴) → (𝐻𝑧) = ((𝐹𝑧) · (𝐺𝑧)))))
147 simpr 477 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝑥𝐴)
14813, 27mulcld 10004 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) ∈ ℂ)
149124fvmpt2 6248 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴 ∧ (𝐵 · 𝐶) ∈ ℂ) → (𝐻𝑥) = (𝐵 · 𝐶))
150147, 148, 149syl2anc 692 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝐻𝑥) = (𝐵 · 𝐶))
15114fvmpt2 6248 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝐴𝐵 ∈ ℂ) → (𝐹𝑥) = 𝐵)
152147, 13, 151syl2anc 692 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
153152eqcomd 2627 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝐵 = (𝐹𝑥))
15428fvmpt2 6248 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝐴𝐶 ∈ ℂ) → (𝐺𝑥) = 𝐶)
155147, 27, 154syl2anc 692 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐴) → (𝐺𝑥) = 𝐶)
156155eqcomd 2627 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → 𝐶 = (𝐺𝑥))
157153, 156oveq12d 6622 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝐵 · 𝐶) = ((𝐹𝑥) · (𝐺𝑥)))
158150, 157eqtrd 2655 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐻𝑥) = ((𝐹𝑥) · (𝐺𝑥)))
159138, 146, 158chvar 2261 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → (𝐻𝑧) = ((𝐹𝑧) · (𝐺𝑧)))
160159oveq1d 6619 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → ((𝐻𝑧) − (𝑋 · 𝑌)) = (((𝐹𝑧) · (𝐺𝑧)) − (𝑋 · 𝑌)))
161160fveq2d 6152 . . . . . . . . . . . . 13 ((𝜑𝑧𝐴) → (abs‘((𝐻𝑧) − (𝑋 · 𝑌))) = (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝑋 · 𝑌))))
162121, 122, 161syl2anc 692 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → (abs‘((𝐻𝑧) − (𝑋 · 𝑌))) = (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝑋 · 𝑌))))
16315ffvelrnda 6315 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ ℂ)
16429ffvelrnda 6315 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝐴) → (𝐺𝑧) ∈ ℂ)
165163, 164jca 554 . . . . . . . . . . . . . 14 ((𝜑𝑧𝐴) → ((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ))
166121, 122, 165syl2anc 692 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ))
167 simpll3 1100 . . . . . . . . . . . . . 14 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤))
1681673ad2ant1 1080 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤))
169 rsp 2924 . . . . . . . . . . . . . . 15 (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))))
1701693imp 1254 . . . . . . . . . . . . . 14 ((∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))
1711703adant1l 1315 . . . . . . . . . . . . 13 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))
172 oveq1 6611 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝐹𝑧) → (𝑐𝑋) = ((𝐹𝑧) − 𝑋))
173172fveq2d 6152 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑧) → (abs‘(𝑐𝑋)) = (abs‘((𝐹𝑧) − 𝑋)))
174173breq1d 4623 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑧) → ((abs‘(𝑐𝑋)) < 𝑎 ↔ (abs‘((𝐹𝑧) − 𝑋)) < 𝑎))
175174anbi1d 740 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑧) → (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) ↔ ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏)))
176 oveq1 6611 . . . . . . . . . . . . . . . . . 18 (𝑐 = (𝐹𝑧) → (𝑐 · 𝑑) = ((𝐹𝑧) · 𝑑))
177176oveq1d 6619 . . . . . . . . . . . . . . . . 17 (𝑐 = (𝐹𝑧) → ((𝑐 · 𝑑) − (𝑋 · 𝑌)) = (((𝐹𝑧) · 𝑑) − (𝑋 · 𝑌)))
178177fveq2d 6152 . . . . . . . . . . . . . . . 16 (𝑐 = (𝐹𝑧) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) = (abs‘(((𝐹𝑧) · 𝑑) − (𝑋 · 𝑌))))
179178breq1d 4623 . . . . . . . . . . . . . . 15 (𝑐 = (𝐹𝑧) → ((abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤 ↔ (abs‘(((𝐹𝑧) · 𝑑) − (𝑋 · 𝑌))) < 𝑤))
180175, 179imbi12d 334 . . . . . . . . . . . . . 14 (𝑐 = (𝐹𝑧) → ((((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤) ↔ (((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘(((𝐹𝑧) · 𝑑) − (𝑋 · 𝑌))) < 𝑤)))
181 oveq1 6611 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝐺𝑧) → (𝑑𝑌) = ((𝐺𝑧) − 𝑌))
182181fveq2d 6152 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐺𝑧) → (abs‘(𝑑𝑌)) = (abs‘((𝐺𝑧) − 𝑌)))
183182breq1d 4623 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐺𝑧) → ((abs‘(𝑑𝑌)) < 𝑏 ↔ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))
184183anbi2d 739 . . . . . . . . . . . . . . 15 (𝑑 = (𝐺𝑧) → (((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) ↔ ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)))
185 oveq2 6612 . . . . . . . . . . . . . . . . . 18 (𝑑 = (𝐺𝑧) → ((𝐹𝑧) · 𝑑) = ((𝐹𝑧) · (𝐺𝑧)))
186185oveq1d 6619 . . . . . . . . . . . . . . . . 17 (𝑑 = (𝐺𝑧) → (((𝐹𝑧) · 𝑑) − (𝑋 · 𝑌)) = (((𝐹𝑧) · (𝐺𝑧)) − (𝑋 · 𝑌)))
187186fveq2d 6152 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐺𝑧) → (abs‘(((𝐹𝑧) · 𝑑) − (𝑋 · 𝑌))) = (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝑋 · 𝑌))))
188187breq1d 4623 . . . . . . . . . . . . . . 15 (𝑑 = (𝐺𝑧) → ((abs‘(((𝐹𝑧) · 𝑑) − (𝑋 · 𝑌))) < 𝑤 ↔ (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝑋 · 𝑌))) < 𝑤))
189184, 188imbi12d 334 . . . . . . . . . . . . . 14 (𝑑 = (𝐺𝑧) → ((((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘(((𝐹𝑧) · 𝑑) − (𝑋 · 𝑌))) < 𝑤) ↔ (((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏) → (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝑋 · 𝑌))) < 𝑤)))
190180, 189rspc2v 3306 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℂ ∧ (𝐺𝑧) ∈ ℂ) → (∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤) → (((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏) → (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝑋 · 𝑌))) < 𝑤)))
191166, 168, 171, 190syl3c 66 . . . . . . . . . . . 12 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → (abs‘(((𝐹𝑧) · (𝐺𝑧)) − (𝑋 · 𝑌))) < 𝑤)
192162, 191eqbrtrd 4635 . . . . . . . . . . 11 ((((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) ∧ 𝑧𝐴 ∧ (𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦)) → (abs‘((𝐻𝑧) − (𝑋 · 𝑌))) < 𝑤)
1931923exp 1261 . . . . . . . . . 10 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → (𝑧𝐴 → ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝑋 · 𝑌))) < 𝑤)))
194118, 193ralrimi 2951 . . . . . . . . 9 (((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) ∧ ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏))) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝑋 · 𝑌))) < 𝑤))
195194ex 450 . . . . . . . 8 ((((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) ∧ 𝑦 ∈ ℝ+) → (∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) → ∀𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝑋 · 𝑌))) < 𝑤)))
196195reximdva 3011 . . . . . . 7 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) → (∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → ((abs‘((𝐹𝑧) − 𝑋)) < 𝑎 ∧ (abs‘((𝐺𝑧) − 𝑌)) < 𝑏)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝑋 · 𝑌))) < 𝑤)))
197115, 196mpd 15 . . . . . 6 (((𝜑𝑤 ∈ ℝ+) ∧ (𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ ∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤)) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝑋 · 𝑌))) < 𝑤))
1981973exp 1261 . . . . 5 ((𝜑𝑤 ∈ ℝ+) → ((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) → (∀𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝑋 · 𝑌))) < 𝑤))))
199198rexlimdvv 3030 . . . 4 ((𝜑𝑤 ∈ ℝ+) → (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+𝑐 ∈ ℂ ∀𝑑 ∈ ℂ (((abs‘(𝑐𝑋)) < 𝑎 ∧ (abs‘(𝑑𝑌)) < 𝑏) → (abs‘((𝑐 · 𝑑) − (𝑋 · 𝑌))) < 𝑤) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝑋 · 𝑌))) < 𝑤)))
20012, 199mpd 15 . . 3 ((𝜑𝑤 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝑋 · 𝑌))) < 𝑤))
201200ralrimiva 2960 . 2 (𝜑 → ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝑋 · 𝑌))) < 𝑤))
202148, 124fmptd 6340 . . 3 (𝜑𝐻:𝐴⟶ℂ)
203202, 20, 21ellimc3 23549 . 2 (𝜑 → ((𝑋 · 𝑌) ∈ (𝐻 lim 𝐷) ↔ ((𝑋 · 𝑌) ∈ ℂ ∧ ∀𝑤 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧𝐷 ∧ (abs‘(𝑧𝐷)) < 𝑦) → (abs‘((𝐻𝑧) − (𝑋 · 𝑌))) < 𝑤))))
2047, 201, 203mpbir2and 956 1 (𝜑 → (𝑋 · 𝑌) ∈ (𝐻 lim 𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  ∃wrex 2908   ⊆ wss 3555  ifcif 4058   class class class wbr 4613   ↦ cmpt 4673  dom cdm 5074  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  ℂcc 9878  ℝcr 9879   · cmul 9885   < clt 10018   ≤ cle 10019   − cmin 10210  ℝ+crp 11776  abscabs 13908   limℂ climc 23532 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-topn 16005  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cnp 20942  df-xms 22035  df-ms 22036  df-limc 23536 This theorem is referenced by:  reclimc  39286  divlimc  39289  fourierdlem73  39700  fourierdlem76  39703  fourierdlem84  39711  fourierdlem85  39712  fourierdlem88  39715
 Copyright terms: Public domain W3C validator