MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mullt0 Structured version   Visualization version   GIF version

Theorem mullt0 10491
Description: The product of two negative numbers is positive. (Contributed by Jeff Hankins, 8-Jun-2009.)
Assertion
Ref Expression
mullt0 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵))

Proof of Theorem mullt0
StepHypRef Expression
1 renegcl 10288 . . . . 5 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
21adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
3 lt0neg1 10478 . . . . 5 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
43biimpa 501 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 0 < -𝐴)
52, 4jca 554 . . 3 ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → (-𝐴 ∈ ℝ ∧ 0 < -𝐴))
6 renegcl 10288 . . . . 5 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
76adantr 481 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → -𝐵 ∈ ℝ)
8 lt0neg1 10478 . . . . 5 (𝐵 ∈ ℝ → (𝐵 < 0 ↔ 0 < -𝐵))
98biimpa 501 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → 0 < -𝐵)
107, 9jca 554 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 < 0) → (-𝐵 ∈ ℝ ∧ 0 < -𝐵))
11 mulgt0 10059 . . 3 (((-𝐴 ∈ ℝ ∧ 0 < -𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 < -𝐵)) → 0 < (-𝐴 · -𝐵))
125, 10, 11syl2an 494 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (-𝐴 · -𝐵))
13 recn 9970 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
14 recn 9970 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
15 mul2neg 10413 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
1613, 14, 15syl2an 494 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
1716ad2ant2r 782 . 2 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
1812, 17breqtrd 4639 1 (((𝐴 ∈ ℝ ∧ 𝐴 < 0) ∧ (𝐵 ∈ ℝ ∧ 𝐵 < 0)) → 0 < (𝐴 · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987   class class class wbr 4613  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880   · cmul 9885   < clt 10018  -cneg 10211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213
This theorem is referenced by:  msqgt0  10492
  Copyright terms: Public domain W3C validator