MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulmarep1el Structured version   Visualization version   GIF version

Theorem mulmarep1el 20297
Description: Element by element multiplication of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
ma1repvcl.1 1 = (1r𝐴)
mulmarep1el.0 0 = (0g𝑅)
mulmarep1el.e 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
Assertion
Ref Expression
mulmarep1el ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))

Proof of Theorem mulmarep1el
StepHypRef Expression
1 simp3 1061 . . . . 5 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐿𝑁)
2 simp2 1060 . . . . 5 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐽𝑁)
31, 2jca 554 . . . 4 ((𝐼𝑁𝐽𝑁𝐿𝑁) → (𝐿𝑁𝐽𝑁))
4 marepvcl.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 marepvcl.b . . . . 5 𝐵 = (Base‘𝐴)
6 marepvcl.v . . . . 5 𝑉 = ((Base‘𝑅) ↑𝑚 𝑁)
7 ma1repvcl.1 . . . . 5 1 = (1r𝐴)
8 mulmarep1el.0 . . . . 5 0 = (0g𝑅)
9 mulmarep1el.e . . . . 5 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
104, 5, 6, 7, 8, 9ma1repveval 20296 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐿𝑁𝐽𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 )))
113, 10syl3an3 1358 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 )))
1211oveq2d 6620 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))))
13 ovif2 6691 . . 3 ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )))
1413a1i 11 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 ))))
15 ovif2 6691 . . . 4 ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )) = if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)), ((𝐼𝑋𝐿)(.r𝑅) 0 ))
16 simp1 1059 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝑅 ∈ Ring)
17 simp1 1059 . . . . . . . 8 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐼𝑁)
18173ad2ant3 1082 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝐼𝑁)
1913ad2ant3 1082 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝐿𝑁)
205eleq2i 2690 . . . . . . . . . 10 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2120biimpi 206 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
22213ad2ant1 1080 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝑋 ∈ (Base‘𝐴))
23223ad2ant2 1081 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝑋 ∈ (Base‘𝐴))
24 eqid 2621 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
254, 24matecl 20150 . . . . . . 7 ((𝐼𝑁𝐿𝑁𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅))
2618, 19, 23, 25syl3anc 1323 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅))
27 eqid 2621 . . . . . . 7 (.r𝑅) = (.r𝑅)
28 eqid 2621 . . . . . . 7 (1r𝑅) = (1r𝑅)
2924, 27, 28ringridm 18493 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)) = (𝐼𝑋𝐿))
3016, 26, 29syl2anc 692 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)) = (𝐼𝑋𝐿))
3124, 27, 8ringrz 18509 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r𝑅) 0 ) = 0 )
3216, 26, 31syl2anc 692 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅) 0 ) = 0 )
3330, 32ifeq12d 4078 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)), ((𝐼𝑋𝐿)(.r𝑅) 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))
3415, 33syl5eq 2667 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))
3534ifeq2d 4077 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))
3612, 14, 353eqtrd 2659 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  ifcif 4058  cfv 5847  (class class class)co 6604  𝑚 cmap 7802  Basecbs 15781  .rcmulr 15863  0gc0g 16021  1rcur 18422  Ringcrg 18468   Mat cmat 20132   matRepV cmatrepV 20282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-ot 4157  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-sup 8292  df-oi 8359  df-card 8709  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-fzo 12407  df-seq 12742  df-hash 13058  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-hom 15887  df-cco 15888  df-0g 16023  df-gsum 16024  df-prds 16029  df-pws 16031  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-submnd 17257  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cntz 17671  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-subrg 18699  df-lmod 18786  df-lss 18852  df-sra 19091  df-rgmod 19092  df-dsmm 19995  df-frlm 20010  df-mamu 20109  df-mat 20133  df-marepv 20284
This theorem is referenced by:  mulmarep1gsum1  20298  mulmarep1gsum2  20299
  Copyright terms: Public domain W3C validator