Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulmoddvds Structured version   Visualization version   GIF version

Theorem mulmoddvds 14975
 Description: If an integer is divisible by a positive integer, the product of this integer with another integer modulo the positive integer is 0. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
Assertion
Ref Expression
mulmoddvds ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0))

Proof of Theorem mulmoddvds
StepHypRef Expression
1 zre 11325 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 id 22 . . . . . . 7 (𝐵 ∈ ℤ → 𝐵 ∈ ℤ)
3 nnrp 11786 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
41, 2, 33anim123i 1245 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℝ+))
543comr 1270 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℝ+))
65adantr 481 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℝ+))
7 modmulmod 12675 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℝ+) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((𝐴 · 𝐵) mod 𝑁))
87eqcomd 2627 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℝ+) → ((𝐴 · 𝐵) mod 𝑁) = (((𝐴 mod 𝑁) · 𝐵) mod 𝑁))
96, 8syl 17 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → ((𝐴 · 𝐵) mod 𝑁) = (((𝐴 mod 𝑁) · 𝐵) mod 𝑁))
10 dvdsval3 14911 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑁𝐴 ↔ (𝐴 mod 𝑁) = 0))
11103adant3 1079 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁𝐴 ↔ (𝐴 mod 𝑁) = 0))
1211biimpa 501 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → (𝐴 mod 𝑁) = 0)
1312oveq1d 6619 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → ((𝐴 mod 𝑁) · 𝐵) = (0 · 𝐵))
1413oveq1d 6619 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = ((0 · 𝐵) mod 𝑁))
15 zcn 11326 . . . . . . . . . 10 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
1615mul02d 10178 . . . . . . . . 9 (𝐵 ∈ ℤ → (0 · 𝐵) = 0)
1716adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (0 · 𝐵) = 0)
1817oveq1d 6619 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((0 · 𝐵) mod 𝑁) = (0 mod 𝑁))
19 0mod 12641 . . . . . . . . 9 (𝑁 ∈ ℝ+ → (0 mod 𝑁) = 0)
203, 19syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (0 mod 𝑁) = 0)
2120adantr 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (0 mod 𝑁) = 0)
2218, 21eqtrd 2655 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((0 · 𝐵) mod 𝑁) = 0)
23223adant2 1078 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((0 · 𝐵) mod 𝑁) = 0)
2423adantr 481 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → ((0 · 𝐵) mod 𝑁) = 0)
2514, 24eqtrd 2655 . . 3 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → (((𝐴 mod 𝑁) · 𝐵) mod 𝑁) = 0)
269, 25eqtrd 2655 . 2 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑁𝐴) → ((𝐴 · 𝐵) mod 𝑁) = 0)
2726ex 450 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑁𝐴 → ((𝐴 · 𝐵) mod 𝑁) = 0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   class class class wbr 4613  (class class class)co 6604  ℝcr 9879  0cc0 9880   · cmul 9885  ℕcn 10964  ℤcz 11321  ℝ+crp 11776   mod cmo 12608   ∥ cdvds 14907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fl 12533  df-mod 12609  df-dvds 14908 This theorem is referenced by:  numclwwlk5  27100  numclwwlk7  27103
 Copyright terms: Public domain W3C validator