Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulog2sumlem1 Structured version   Visualization version   GIF version

Theorem mulog2sumlem1 25268
 Description: Asymptotic formula for Σ𝑛 ≤ 𝑥, log(𝑥 / 𝑛) / 𝑛 = (1 / 2)log↑2(𝑥) + γ · log𝑥 − 𝐿 + 𝑂(log𝑥 / 𝑥), with explicit constants. Equation 10.2.7 of [Shapiro], p. 407. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
mulog2sumlem.1 (𝜑𝐹𝑟 𝐿)
mulog2sumlem1.2 (𝜑𝐴 ∈ ℝ+)
mulog2sumlem1.3 (𝜑 → e ≤ 𝐴)
Assertion
Ref Expression
mulog2sumlem1 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) ≤ (2 · ((log‘𝐴) / 𝐴)))
Distinct variable groups:   𝑖,𝑚,𝑦,𝐴   𝜑,𝑚
Allowed substitution hints:   𝜑(𝑦,𝑖)   𝐹(𝑦,𝑖,𝑚)   𝐿(𝑦,𝑖,𝑚)

Proof of Theorem mulog2sumlem1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fzfid 12812 . . . . . 6 (𝜑 → (1...(⌊‘𝐴)) ∈ Fin)
2 mulog2sumlem1.2 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ+)
3 elfznn 12408 . . . . . . . . . 10 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
43nnrpd 11908 . . . . . . . . 9 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℝ+)
5 rpdivcl 11894 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (𝐴 / 𝑚) ∈ ℝ+)
62, 4, 5syl2an 493 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (𝐴 / 𝑚) ∈ ℝ+)
76relogcld 24414 . . . . . . 7 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑚)) ∈ ℝ)
83adantl 481 . . . . . . 7 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
97, 8nndivred 11107 . . . . . 6 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) ∈ ℝ)
101, 9fsumrecl 14509 . . . . 5 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) ∈ ℝ)
112relogcld 24414 . . . . . . . 8 (𝜑 → (log‘𝐴) ∈ ℝ)
1211resqcld 13075 . . . . . . 7 (𝜑 → ((log‘𝐴)↑2) ∈ ℝ)
1312rehalfcld 11317 . . . . . 6 (𝜑 → (((log‘𝐴)↑2) / 2) ∈ ℝ)
14 emre 24777 . . . . . . . 8 γ ∈ ℝ
15 remulcl 10059 . . . . . . . 8 ((γ ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (γ · (log‘𝐴)) ∈ ℝ)
1614, 11, 15sylancr 696 . . . . . . 7 (𝜑 → (γ · (log‘𝐴)) ∈ ℝ)
17 rpsup 12705 . . . . . . . . 9 sup(ℝ+, ℝ*, < ) = +∞
1817a1i 11 . . . . . . . 8 (𝜑 → sup(ℝ+, ℝ*, < ) = +∞)
19 logdivsum.1 . . . . . . . . . . . . 13 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
2019logdivsum 25267 . . . . . . . . . . . 12 (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))
2120simp1i 1090 . . . . . . . . . . 11 𝐹:ℝ+⟶ℝ
2221a1i 11 . . . . . . . . . 10 (𝜑𝐹:ℝ+⟶ℝ)
2322feqmptd 6288 . . . . . . . . 9 (𝜑𝐹 = (𝑥 ∈ ℝ+ ↦ (𝐹𝑥)))
24 mulog2sumlem.1 . . . . . . . . 9 (𝜑𝐹𝑟 𝐿)
2523, 24eqbrtrrd 4709 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝐹𝑥)) ⇝𝑟 𝐿)
2621ffvelrni 6398 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝐹𝑥) ∈ ℝ)
2726adantl 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (𝐹𝑥) ∈ ℝ)
2818, 25, 27rlimrecl 14355 . . . . . . 7 (𝜑𝐿 ∈ ℝ)
2916, 28resubcld 10496 . . . . . 6 (𝜑 → ((γ · (log‘𝐴)) − 𝐿) ∈ ℝ)
3013, 29readdcld 10107 . . . . 5 (𝜑 → ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)) ∈ ℝ)
3110, 30resubcld 10496 . . . 4 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿))) ∈ ℝ)
3231recnd 10106 . . 3 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿))) ∈ ℂ)
3332abscld 14219 . 2 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) ∈ ℝ)
34 rerpdivcl 11899 . . . . . . . 8 (((log‘𝐴) ∈ ℝ ∧ 𝑚 ∈ ℝ+) → ((log‘𝐴) / 𝑚) ∈ ℝ)
3511, 4, 34syl2an 493 . . . . . . 7 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) ∈ ℝ)
3635recnd 10106 . . . . . 6 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) ∈ ℂ)
371, 36fsumcl 14508 . . . . 5 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) ∈ ℂ)
3811recnd 10106 . . . . . 6 (𝜑 → (log‘𝐴) ∈ ℂ)
39 readdcl 10057 . . . . . . . 8 (((log‘𝐴) ∈ ℝ ∧ γ ∈ ℝ) → ((log‘𝐴) + γ) ∈ ℝ)
4011, 14, 39sylancl 695 . . . . . . 7 (𝜑 → ((log‘𝐴) + γ) ∈ ℝ)
4140recnd 10106 . . . . . 6 (𝜑 → ((log‘𝐴) + γ) ∈ ℂ)
4238, 41mulcld 10098 . . . . 5 (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) ∈ ℂ)
4337, 42subcld 10430 . . . 4 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) ∈ ℂ)
4443abscld 14219 . . 3 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) ∈ ℝ)
458nnrpd 11908 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℝ+)
4645relogcld 24414 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝑚) ∈ ℝ)
4746, 8nndivred 11107 . . . . . . 7 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝑚) / 𝑚) ∈ ℝ)
4847recnd 10106 . . . . . 6 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝑚) / 𝑚) ∈ ℂ)
491, 48fsumcl 14508 . . . . 5 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) ∈ ℂ)
5013recnd 10106 . . . . . 6 (𝜑 → (((log‘𝐴)↑2) / 2) ∈ ℂ)
5128recnd 10106 . . . . . 6 (𝜑𝐿 ∈ ℂ)
5250, 51addcld 10097 . . . . 5 (𝜑 → ((((log‘𝐴)↑2) / 2) + 𝐿) ∈ ℂ)
5349, 52subcld 10430 . . . 4 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)) ∈ ℂ)
5453abscld 14219 . . 3 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) ∈ ℝ)
5544, 54readdcld 10107 . 2 (𝜑 → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ∈ ℝ)
56 2re 11128 . . 3 2 ∈ ℝ
5711, 2rerpdivcld 11941 . . 3 (𝜑 → ((log‘𝐴) / 𝐴) ∈ ℝ)
58 remulcl 10059 . . 3 ((2 ∈ ℝ ∧ ((log‘𝐴) / 𝐴) ∈ ℝ) → (2 · ((log‘𝐴) / 𝐴)) ∈ ℝ)
5956, 57, 58sylancr 696 . 2 (𝜑 → (2 · ((log‘𝐴) / 𝐴)) ∈ ℝ)
60 relogdiv 24384 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+𝑚 ∈ ℝ+) → (log‘(𝐴 / 𝑚)) = ((log‘𝐴) − (log‘𝑚)))
612, 4, 60syl2an 493 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘(𝐴 / 𝑚)) = ((log‘𝐴) − (log‘𝑚)))
6261oveq1d 6705 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) = (((log‘𝐴) − (log‘𝑚)) / 𝑚))
6338adantr 480 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝐴) ∈ ℂ)
6446recnd 10106 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (log‘𝑚) ∈ ℂ)
6545rpcnne0d 11919 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0))
66 divsubdir 10759 . . . . . . . . . 10 (((log‘𝐴) ∈ ℂ ∧ (log‘𝑚) ∈ ℂ ∧ (𝑚 ∈ ℂ ∧ 𝑚 ≠ 0)) → (((log‘𝐴) − (log‘𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)))
6763, 64, 65, 66syl3anc 1366 . . . . . . . . 9 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (((log‘𝐴) − (log‘𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)))
6862, 67eqtrd 2685 . . . . . . . 8 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘(𝐴 / 𝑚)) / 𝑚) = (((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)))
6968sumeq2dv 14477 . . . . . . 7 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))(((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)))
701, 36, 48fsumsub 14564 . . . . . . 7 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(((log‘𝐴) / 𝑚) − ((log‘𝑚) / 𝑚)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)))
7169, 70eqtrd 2685 . . . . . 6 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)))
72 remulcl 10059 . . . . . . . . . . . . 13 (((log‘𝐴) ∈ ℝ ∧ γ ∈ ℝ) → ((log‘𝐴) · γ) ∈ ℝ)
7311, 14, 72sylancl 695 . . . . . . . . . . . 12 (𝜑 → ((log‘𝐴) · γ) ∈ ℝ)
7413, 73readdcld 10107 . . . . . . . . . . 11 (𝜑 → ((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) ∈ ℝ)
7574recnd 10106 . . . . . . . . . 10 (𝜑 → ((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) ∈ ℂ)
7675, 50pncand 10431 . . . . . . . . 9 (𝜑 → ((((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) + (((log‘𝐴)↑2) / 2)) − (((log‘𝐴)↑2) / 2)) = ((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)))
7714recni 10090 . . . . . . . . . . . . 13 γ ∈ ℂ
7877a1i 11 . . . . . . . . . . . 12 (𝜑 → γ ∈ ℂ)
7938, 38, 78adddid 10102 . . . . . . . . . . 11 (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) = (((log‘𝐴) · (log‘𝐴)) + ((log‘𝐴) · γ)))
8012recnd 10106 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝐴)↑2) ∈ ℂ)
81802halvesd 11316 . . . . . . . . . . . . 13 (𝜑 → ((((log‘𝐴)↑2) / 2) + (((log‘𝐴)↑2) / 2)) = ((log‘𝐴)↑2))
8238sqvald 13045 . . . . . . . . . . . . 13 (𝜑 → ((log‘𝐴)↑2) = ((log‘𝐴) · (log‘𝐴)))
8381, 82eqtrd 2685 . . . . . . . . . . . 12 (𝜑 → ((((log‘𝐴)↑2) / 2) + (((log‘𝐴)↑2) / 2)) = ((log‘𝐴) · (log‘𝐴)))
8483oveq1d 6705 . . . . . . . . . . 11 (𝜑 → (((((log‘𝐴)↑2) / 2) + (((log‘𝐴)↑2) / 2)) + ((log‘𝐴) · γ)) = (((log‘𝐴) · (log‘𝐴)) + ((log‘𝐴) · γ)))
8573recnd 10106 . . . . . . . . . . . 12 (𝜑 → ((log‘𝐴) · γ) ∈ ℂ)
8650, 50, 85add32d 10301 . . . . . . . . . . 11 (𝜑 → (((((log‘𝐴)↑2) / 2) + (((log‘𝐴)↑2) / 2)) + ((log‘𝐴) · γ)) = (((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) + (((log‘𝐴)↑2) / 2)))
8779, 84, 863eqtr2d 2691 . . . . . . . . . 10 (𝜑 → ((log‘𝐴) · ((log‘𝐴) + γ)) = (((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) + (((log‘𝐴)↑2) / 2)))
8887oveq1d 6705 . . . . . . . . 9 (𝜑 → (((log‘𝐴) · ((log‘𝐴) + γ)) − (((log‘𝐴)↑2) / 2)) = ((((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)) + (((log‘𝐴)↑2) / 2)) − (((log‘𝐴)↑2) / 2)))
89 mulcom 10060 . . . . . . . . . . 11 ((γ ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (γ · (log‘𝐴)) = ((log‘𝐴) · γ))
9077, 38, 89sylancr 696 . . . . . . . . . 10 (𝜑 → (γ · (log‘𝐴)) = ((log‘𝐴) · γ))
9190oveq2d 6706 . . . . . . . . 9 (𝜑 → ((((log‘𝐴)↑2) / 2) + (γ · (log‘𝐴))) = ((((log‘𝐴)↑2) / 2) + ((log‘𝐴) · γ)))
9276, 88, 913eqtr4rd 2696 . . . . . . . 8 (𝜑 → ((((log‘𝐴)↑2) / 2) + (γ · (log‘𝐴))) = (((log‘𝐴) · ((log‘𝐴) + γ)) − (((log‘𝐴)↑2) / 2)))
9392oveq1d 6705 . . . . . . 7 (𝜑 → (((((log‘𝐴)↑2) / 2) + (γ · (log‘𝐴))) − 𝐿) = ((((log‘𝐴) · ((log‘𝐴) + γ)) − (((log‘𝐴)↑2) / 2)) − 𝐿))
9490, 85eqeltrd 2730 . . . . . . . 8 (𝜑 → (γ · (log‘𝐴)) ∈ ℂ)
9550, 94, 51addsubassd 10450 . . . . . . 7 (𝜑 → (((((log‘𝐴)↑2) / 2) + (γ · (log‘𝐴))) − 𝐿) = ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))
9642, 50, 51subsub4d 10461 . . . . . . 7 (𝜑 → ((((log‘𝐴) · ((log‘𝐴) + γ)) − (((log‘𝐴)↑2) / 2)) − 𝐿) = (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿)))
9793, 95, 963eqtr3d 2693 . . . . . 6 (𝜑 → ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)) = (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿)))
9871, 97oveq12d 6708 . . . . 5 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿))) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) − (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿))))
9937, 49, 42, 52sub4d 10479 . . . . 5 (𝜑 → ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚)) − (((log‘𝐴) · ((log‘𝐴) + γ)) − ((((log‘𝐴)↑2) / 2) + 𝐿))) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))
10098, 99eqtrd 2685 . . . 4 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿))) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))
101100fveq2d 6233 . . 3 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) = (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))))
10243, 53abs2dif2d 14241 . . 3 (𝜑 → (abs‘((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) − (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))))
103101, 102eqbrtrd 4707 . 2 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) ≤ ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))))
104 harmonicbnd4 24782 . . . . . . 7 (𝐴 ∈ ℝ+ → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
1052, 104syl 17 . . . . . 6 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴))
1068nnrecred 11104 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℝ)
1071, 106fsumrecl 14509 . . . . . . . . . 10 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℝ)
108107, 40resubcld 10496 . . . . . . . . 9 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈ ℝ)
109108recnd 10106 . . . . . . . 8 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈ ℂ)
110109abscld 14219 . . . . . . 7 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ∈ ℝ)
1112rprecred 11921 . . . . . . 7 (𝜑 → (1 / 𝐴) ∈ ℝ)
112 0red 10079 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
113 1red 10093 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
114 0lt1 10588 . . . . . . . . 9 0 < 1
115114a1i 11 . . . . . . . 8 (𝜑 → 0 < 1)
116 loge 24378 . . . . . . . . 9 (log‘e) = 1
117 mulog2sumlem1.3 . . . . . . . . . 10 (𝜑 → e ≤ 𝐴)
118 epr 14980 . . . . . . . . . . 11 e ∈ ℝ+
119 logleb 24394 . . . . . . . . . . 11 ((e ∈ ℝ+𝐴 ∈ ℝ+) → (e ≤ 𝐴 ↔ (log‘e) ≤ (log‘𝐴)))
120118, 2, 119sylancr 696 . . . . . . . . . 10 (𝜑 → (e ≤ 𝐴 ↔ (log‘e) ≤ (log‘𝐴)))
121117, 120mpbid 222 . . . . . . . . 9 (𝜑 → (log‘e) ≤ (log‘𝐴))
122116, 121syl5eqbrr 4721 . . . . . . . 8 (𝜑 → 1 ≤ (log‘𝐴))
123112, 113, 11, 115, 122ltletrd 10235 . . . . . . 7 (𝜑 → 0 < (log‘𝐴))
124 lemul2 10914 . . . . . . 7 (((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ ((log‘𝐴) ∈ ℝ ∧ 0 < (log‘𝐴))) → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴) ↔ ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) · (1 / 𝐴))))
125110, 111, 11, 123, 124syl112anc 1370 . . . . . 6 (𝜑 → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) ≤ (1 / 𝐴) ↔ ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) · (1 / 𝐴))))
126105, 125mpbid 222 . . . . 5 (𝜑 → ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) · (1 / 𝐴)))
12745rpcnd 11912 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℂ)
12845rpne0d 11915 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ≠ 0)
12963, 127, 128divrecd 10842 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → ((log‘𝐴) / 𝑚) = ((log‘𝐴) · (1 / 𝑚)))
130129sumeq2dv 14477 . . . . . . . . . 10 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) · (1 / 𝑚)))
131106recnd 10106 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℂ)
1321, 38, 131fsummulc2 14560 . . . . . . . . . 10 (𝜑 → ((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) · (1 / 𝑚)))
133130, 132eqtr4d 2688 . . . . . . . . 9 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) = ((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)))
134133oveq1d 6705 . . . . . . . 8 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) = (((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)) − ((log‘𝐴) · ((log‘𝐴) + γ))))
1351, 131fsumcl 14508 . . . . . . . . 9 (𝜑 → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℂ)
13638, 135, 41subdid 10524 . . . . . . . 8 (𝜑 → ((log‘𝐴) · (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))) = (((log‘𝐴) · Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)) − ((log‘𝐴) · ((log‘𝐴) + γ))))
137134, 136eqtr4d 2688 . . . . . . 7 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ))) = ((log‘𝐴) · (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ))))
138137fveq2d 6233 . . . . . 6 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) = (abs‘((log‘𝐴) · (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))))
139135, 41subcld 10430 . . . . . . 7 (𝜑 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)) ∈ ℂ)
14038, 139absmuld 14237 . . . . . 6 (𝜑 → (abs‘((log‘𝐴) · (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) = ((abs‘(log‘𝐴)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))))
141112, 11, 123ltled 10223 . . . . . . . 8 (𝜑 → 0 ≤ (log‘𝐴))
14211, 141absidd 14205 . . . . . . 7 (𝜑 → (abs‘(log‘𝐴)) = (log‘𝐴))
143142oveq1d 6705 . . . . . 6 (𝜑 → ((abs‘(log‘𝐴)) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))) = ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))))
144138, 140, 1433eqtrd 2689 . . . . 5 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) = ((log‘𝐴) · (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − ((log‘𝐴) + γ)))))
1452rpcnd 11912 . . . . . 6 (𝜑𝐴 ∈ ℂ)
1462rpne0d 11915 . . . . . 6 (𝜑𝐴 ≠ 0)
14738, 145, 146divrecd 10842 . . . . 5 (𝜑 → ((log‘𝐴) / 𝐴) = ((log‘𝐴) · (1 / 𝐴)))
148126, 144, 1473brtr4d 4717 . . . 4 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) ≤ ((log‘𝐴) / 𝐴))
149 fveq2 6229 . . . . . . . . . . . . . 14 (𝑖 = 𝑚 → (log‘𝑖) = (log‘𝑚))
150 id 22 . . . . . . . . . . . . . 14 (𝑖 = 𝑚𝑖 = 𝑚)
151149, 150oveq12d 6708 . . . . . . . . . . . . 13 (𝑖 = 𝑚 → ((log‘𝑖) / 𝑖) = ((log‘𝑚) / 𝑚))
152151cbvsumv 14470 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) = Σ𝑚 ∈ (1...(⌊‘𝑦))((log‘𝑚) / 𝑚)
153 fveq2 6229 . . . . . . . . . . . . . 14 (𝑦 = 𝐴 → (⌊‘𝑦) = (⌊‘𝐴))
154153oveq2d 6706 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (1...(⌊‘𝑦)) = (1...(⌊‘𝐴)))
155154sumeq1d 14475 . . . . . . . . . . . 12 (𝑦 = 𝐴 → Σ𝑚 ∈ (1...(⌊‘𝑦))((log‘𝑚) / 𝑚) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚))
156152, 155syl5eq 2697 . . . . . . . . . . 11 (𝑦 = 𝐴 → Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) = Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚))
157 fveq2 6229 . . . . . . . . . . . . 13 (𝑦 = 𝐴 → (log‘𝑦) = (log‘𝐴))
158157oveq1d 6705 . . . . . . . . . . . 12 (𝑦 = 𝐴 → ((log‘𝑦)↑2) = ((log‘𝐴)↑2))
159158oveq1d 6705 . . . . . . . . . . 11 (𝑦 = 𝐴 → (((log‘𝑦)↑2) / 2) = (((log‘𝐴)↑2) / 2))
160156, 159oveq12d 6708 . . . . . . . . . 10 (𝑦 = 𝐴 → (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)))
161 ovex 6718 . . . . . . . . . 10 𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) ∈ V
162160, 19, 161fvmpt 6321 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐹𝐴) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)))
1632, 162syl 17 . . . . . . . 8 (𝜑 → (𝐹𝐴) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)))
164163oveq1d 6705 . . . . . . 7 (𝜑 → ((𝐹𝐴) − 𝐿) = ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) − 𝐿))
16549, 50, 51subsub4d 10461 . . . . . . 7 (𝜑 → ((Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − (((log‘𝐴)↑2) / 2)) − 𝐿) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))
166164, 165eqtrd 2685 . . . . . 6 (𝜑 → ((𝐹𝐴) − 𝐿) = (Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))
167166fveq2d 6233 . . . . 5 (𝜑 → (abs‘((𝐹𝐴) − 𝐿)) = (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))))
16820simp3i 1092 . . . . . 6 ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))
16924, 2, 117, 168syl3anc 1366 . . . . 5 (𝜑 → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))
170167, 169eqbrtrrd 4709 . . . 4 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿))) ≤ ((log‘𝐴) / 𝐴))
17144, 54, 57, 57, 148, 170le2addd 10684 . . 3 (𝜑 → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ (((log‘𝐴) / 𝐴) + ((log‘𝐴) / 𝐴)))
17257recnd 10106 . . . 4 (𝜑 → ((log‘𝐴) / 𝐴) ∈ ℂ)
1731722timesd 11313 . . 3 (𝜑 → (2 · ((log‘𝐴) / 𝐴)) = (((log‘𝐴) / 𝐴) + ((log‘𝐴) / 𝐴)))
174171, 173breqtrrd 4713 . 2 (𝜑 → ((abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝐴) / 𝑚) − ((log‘𝐴) · ((log‘𝐴) + γ)))) + (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘𝑚) / 𝑚) − ((((log‘𝐴)↑2) / 2) + 𝐿)))) ≤ (2 · ((log‘𝐴) / 𝐴)))
17533, 55, 59, 103, 174letrd 10232 1 (𝜑 → (abs‘(Σ𝑚 ∈ (1...(⌊‘𝐴))((log‘(𝐴 / 𝑚)) / 𝑚) − ((((log‘𝐴)↑2) / 2) + ((γ · (log‘𝐴)) − 𝐿)))) ≤ (2 · ((log‘𝐴) / 𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   class class class wbr 4685   ↦ cmpt 4762  dom cdm 5143  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  supcsup 8387  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  +∞cpnf 10109  ℝ*cxr 10111   < clt 10112   ≤ cle 10113   − cmin 10304   / cdiv 10722  ℕcn 11058  2c2 11108  ℝ+crp 11870  ...cfz 12364  ⌊cfl 12631  ↑cexp 12900  abscabs 14018   ⇝𝑟 crli 14260  Σcsu 14460  eceu 14837  logclog 24346  γcem 24763 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-e 14843  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-cxp 24349  df-em 24764 This theorem is referenced by:  mulog2sumlem2  25269
 Copyright terms: Public domain W3C validator