MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  musum Structured version   Visualization version   GIF version

Theorem musum 24634
Description: The sum of the Möbius function over the divisors of 𝑁 gives one if 𝑁 = 1, but otherwise always sums to zero. Theorem 2.1 in [ApostolNT] p. 25. This makes the Möbius function useful for inverting divisor sums; see also muinv 24636. (Contributed by Mario Carneiro, 2-Jul-2015.)
Assertion
Ref Expression
musum (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘) = if(𝑁 = 1, 1, 0))
Distinct variable group:   𝑘,𝑛,𝑁

Proof of Theorem musum
Dummy variables 𝑚 𝑝 𝑞 𝑠 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6088 . . . . . . . 8 (𝑛 = 𝑘 → (μ‘𝑛) = (μ‘𝑘))
21neeq1d 2840 . . . . . . 7 (𝑛 = 𝑘 → ((μ‘𝑛) ≠ 0 ↔ (μ‘𝑘) ≠ 0))
3 breq1 4580 . . . . . . 7 (𝑛 = 𝑘 → (𝑛𝑁𝑘𝑁))
42, 3anbi12d 742 . . . . . 6 (𝑛 = 𝑘 → (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) ↔ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)))
54elrab 3330 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↔ (𝑘 ∈ ℕ ∧ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)))
6 muval2 24577 . . . . . 6 ((𝑘 ∈ ℕ ∧ (μ‘𝑘) ≠ 0) → (μ‘𝑘) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
76adantrr 748 . . . . 5 ((𝑘 ∈ ℕ ∧ ((μ‘𝑘) ≠ 0 ∧ 𝑘𝑁)) → (μ‘𝑘) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
85, 7sylbi 205 . . . 4 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} → (μ‘𝑘) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
98adantl 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
109sumeq2dv 14227 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (μ‘𝑘) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
11 simpr 475 . . . . 5 (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → 𝑛𝑁)
1211a1i 11 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑛 ∈ ℕ) → (((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → 𝑛𝑁))
1312ss2rabdv 3645 . . 3 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁})
14 ssrab2 3649 . . . . . 6 {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ⊆ ℕ
15 simpr 475 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)})
1614, 15sseldi 3565 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ ℕ)
17 mucl 24584 . . . . 5 (𝑘 ∈ ℕ → (μ‘𝑘) ∈ ℤ)
1816, 17syl 17 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) ∈ ℤ)
1918zcnd 11315 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) ∈ ℂ)
20 difrab 3859 . . . . . . 7 ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) = {𝑛 ∈ ℕ ∣ (𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))}
21 pm3.21 462 . . . . . . . . . . 11 (𝑛𝑁 → ((μ‘𝑛) ≠ 0 → ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)))
2221necon1bd 2799 . . . . . . . . . 10 (𝑛𝑁 → (¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁) → (μ‘𝑛) = 0))
2322imp 443 . . . . . . . . 9 ((𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)) → (μ‘𝑛) = 0)
2423a1i 11 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)) → (μ‘𝑛) = 0))
2524ss2rabi 3646 . . . . . . 7 {𝑛 ∈ ℕ ∣ (𝑛𝑁 ∧ ¬ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁))} ⊆ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0}
2620, 25eqsstri 3597 . . . . . 6 ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) ⊆ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0}
2726sseli 3563 . . . . 5 (𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → 𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0})
281eqeq1d 2611 . . . . . . 7 (𝑛 = 𝑘 → ((μ‘𝑛) = 0 ↔ (μ‘𝑘) = 0))
2928elrab 3330 . . . . . 6 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} ↔ (𝑘 ∈ ℕ ∧ (μ‘𝑘) = 0))
3029simprbi 478 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ (μ‘𝑛) = 0} → (μ‘𝑘) = 0)
3127, 30syl 17 . . . 4 (𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → (μ‘𝑘) = 0)
3231adantl 480 . . 3 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∖ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)})) → (μ‘𝑘) = 0)
33 fzfid 12589 . . . 4 (𝑁 ∈ ℕ → (1...𝑁) ∈ Fin)
34 dvdsssfz1 14824 . . . 4 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑁} ⊆ (1...𝑁))
35 ssfi 8042 . . . 4 (((1...𝑁) ∈ Fin ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑁} ⊆ (1...𝑁)) → {𝑛 ∈ ℕ ∣ 𝑛𝑁} ∈ Fin)
3633, 34, 35syl2anc 690 . . 3 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ 𝑛𝑁} ∈ Fin)
3713, 19, 32, 36fsumss 14249 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (μ‘𝑘) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘))
38 fveq2 6088 . . . . 5 (𝑥 = {𝑝 ∈ ℙ ∣ 𝑝𝑘} → (#‘𝑥) = (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑘}))
3938oveq2d 6543 . . . 4 (𝑥 = {𝑝 ∈ ℙ ∣ 𝑝𝑘} → (-1↑(#‘𝑥)) = (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
40 ssfi 8042 . . . . 5 (({𝑛 ∈ ℕ ∣ 𝑛𝑁} ∈ Fin ∧ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ⊆ {𝑛 ∈ ℕ ∣ 𝑛𝑁}) → {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ∈ Fin)
4136, 13, 40syl2anc 690 . . . 4 (𝑁 ∈ ℕ → {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ∈ Fin)
42 eqid 2609 . . . . 5 {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} = {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}
43 eqid 2609 . . . . 5 (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚}) = (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})
44 oveq1 6534 . . . . . . . 8 (𝑞 = 𝑝 → (𝑞 pCnt 𝑥) = (𝑝 pCnt 𝑥))
4544cbvmptv 4672 . . . . . . 7 (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑥))
46 oveq2 6535 . . . . . . . 8 (𝑥 = 𝑚 → (𝑝 pCnt 𝑥) = (𝑝 pCnt 𝑚))
4746mpteq2dv 4667 . . . . . . 7 (𝑥 = 𝑚 → (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4845, 47syl5eq 2655 . . . . . 6 (𝑥 = 𝑚 → (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
4948cbvmptv 4672 . . . . 5 (𝑥 ∈ ℕ ↦ (𝑞 ∈ ℙ ↦ (𝑞 pCnt 𝑥))) = (𝑚 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑚)))
5042, 43, 49sqff1o 24625 . . . 4 (𝑁 ∈ ℕ → (𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚}):{𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}–1-1-onto→𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
51 breq2 4581 . . . . . . 7 (𝑚 = 𝑘 → (𝑝𝑚𝑝𝑘))
5251rabbidv 3163 . . . . . 6 (𝑚 = 𝑘 → {𝑝 ∈ ℙ ∣ 𝑝𝑚} = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
53 zex 11219 . . . . . . . 8 ℤ ∈ V
54 prmz 15173 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
5554ssriv 3571 . . . . . . . 8 ℙ ⊆ ℤ
5653, 55ssexi 4726 . . . . . . 7 ℙ ∈ V
5756rabex 4735 . . . . . 6 {𝑝 ∈ ℙ ∣ 𝑝𝑘} ∈ V
5852, 43, 57fvmpt 6176 . . . . 5 (𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} → ((𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})‘𝑘) = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
5958adantl 480 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)}) → ((𝑚 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑚})‘𝑘) = {𝑝 ∈ ℙ ∣ 𝑝𝑘})
60 neg1cn 10971 . . . . 5 -1 ∈ ℂ
61 prmdvdsfi 24550 . . . . . . 7 (𝑁 ∈ ℕ → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
62 elpwi 4116 . . . . . . 7 (𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
63 ssfi 8042 . . . . . . 7 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑥 ∈ Fin)
6461, 62, 63syl2an 492 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑥 ∈ Fin)
65 hashcl 12961 . . . . . 6 (𝑥 ∈ Fin → (#‘𝑥) ∈ ℕ0)
6664, 65syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (#‘𝑥) ∈ ℕ0)
67 expcl 12695 . . . . 5 ((-1 ∈ ℂ ∧ (#‘𝑥) ∈ ℕ0) → (-1↑(#‘𝑥)) ∈ ℂ)
6860, 66, 67sylancr 693 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (-1↑(#‘𝑥)) ∈ ℂ)
6939, 41, 50, 59, 68fsumf1o 14247 . . 3 (𝑁 ∈ ℕ → Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(#‘𝑥)) = Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})))
70 fzfid 12589 . . . . 5 (𝑁 ∈ ℕ → (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∈ Fin)
7161adantr 479 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
72 pwfi 8121 . . . . . . 7 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ↔ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
7371, 72sylib 206 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
74 ssrab2 3649 . . . . . 6 {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} ⊆ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}
75 ssfi 8042 . . . . . 6 ((𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} ⊆ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} ∈ Fin)
7673, 74, 75sylancl 692 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} ∈ Fin)
77 simprr 791 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧})) → 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧})
78 fveq2 6088 . . . . . . . . . . 11 (𝑠 = 𝑥 → (#‘𝑠) = (#‘𝑥))
7978eqeq1d 2611 . . . . . . . . . 10 (𝑠 = 𝑥 → ((#‘𝑠) = 𝑧 ↔ (#‘𝑥) = 𝑧))
8079elrab 3330 . . . . . . . . 9 (𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} ↔ (𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∧ (#‘𝑥) = 𝑧))
8180simprbi 478 . . . . . . . 8 (𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} → (#‘𝑥) = 𝑧)
8277, 81syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧})) → (#‘𝑥) = 𝑧)
8382ralrimivva 2953 . . . . . 6 (𝑁 ∈ ℕ → ∀𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))∀𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} (#‘𝑥) = 𝑧)
84 invdisj 4565 . . . . . 6 (∀𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))∀𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} (#‘𝑥) = 𝑧Disj 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧})
8583, 84syl 17 . . . . 5 (𝑁 ∈ ℕ → Disj 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧})
8661adantr 479 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧})) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
8774, 77sseldi 3565 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧})) → 𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
8887, 62syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧})) → 𝑥 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
8986, 88, 63syl2anc 690 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧})) → 𝑥 ∈ Fin)
9089, 65syl 17 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧})) → (#‘𝑥) ∈ ℕ0)
9160, 90, 67sylancr 693 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧})) → (-1↑(#‘𝑥)) ∈ ℂ)
9270, 76, 85, 91fsumiun 14340 . . . 4 (𝑁 ∈ ℕ → Σ𝑥 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} (-1↑(#‘𝑥)) = Σ𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} (-1↑(#‘𝑥)))
9361adantr 479 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
94 elpwi 4116 . . . . . . . . . . . . 13 (𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
9594adantl 480 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
96 ssdomg 7864 . . . . . . . . . . . 12 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → (𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁} → 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
9793, 95, 96sylc 62 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁})
98 ssfi 8042 . . . . . . . . . . . . 13 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑠 ⊆ {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ∈ Fin)
9961, 94, 98syl2an 492 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → 𝑠 ∈ Fin)
100 hashdom 12981 . . . . . . . . . . . 12 ((𝑠 ∈ Fin ∧ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin) → ((#‘𝑠) ≤ (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ↔ 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
10199, 93, 100syl2anc 690 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((#‘𝑠) ≤ (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ↔ 𝑠 ≼ {𝑝 ∈ ℙ ∣ 𝑝𝑁}))
10297, 101mpbird 245 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (#‘𝑠) ≤ (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))
103 hashcl 12961 . . . . . . . . . . . . 13 (𝑠 ∈ Fin → (#‘𝑠) ∈ ℕ0)
10499, 103syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (#‘𝑠) ∈ ℕ0)
105 nn0uz 11554 . . . . . . . . . . . 12 0 = (ℤ‘0)
106104, 105syl6eleq 2697 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (#‘𝑠) ∈ (ℤ‘0))
107 hashcl 12961 . . . . . . . . . . . . . 14 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
10861, 107syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
109108adantr 479 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0)
110109nn0zd 11312 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℤ)
111 elfz5 12160 . . . . . . . . . . 11 (((#‘𝑠) ∈ (ℤ‘0) ∧ (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℤ) → ((#‘𝑠) ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ↔ (#‘𝑠) ≤ (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
112106, 110, 111syl2anc 690 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ((#‘𝑠) ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ↔ (#‘𝑠) ≤ (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
113102, 112mpbird 245 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (#‘𝑠) ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})))
114 eqidd 2610 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → (#‘𝑠) = (#‘𝑠))
115 eqeq2 2620 . . . . . . . . . 10 (𝑧 = (#‘𝑠) → ((#‘𝑠) = 𝑧 ↔ (#‘𝑠) = (#‘𝑠)))
116115rspcev 3281 . . . . . . . . 9 (((#‘𝑠) ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) ∧ (#‘𝑠) = (#‘𝑠)) → ∃𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(#‘𝑠) = 𝑧)
117113, 114, 116syl2anc 690 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}) → ∃𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(#‘𝑠) = 𝑧)
118117ralrimiva 2948 . . . . . . 7 (𝑁 ∈ ℕ → ∀𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}∃𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(#‘𝑠) = 𝑧)
119 rabid2 3095 . . . . . . 7 (𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(#‘𝑠) = 𝑧} ↔ ∀𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁}∃𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(#‘𝑠) = 𝑧)
120118, 119sylibr 222 . . . . . 6 (𝑁 ∈ ℕ → 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(#‘𝑠) = 𝑧})
121 iunrab 4497 . . . . . 6 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} = {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ ∃𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(#‘𝑠) = 𝑧}
122120, 121syl6reqr 2662 . . . . 5 (𝑁 ∈ ℕ → 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} = 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁})
123122sumeq1d 14225 . . . 4 (𝑁 ∈ ℕ → Σ𝑥 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})){𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} (-1↑(#‘𝑥)) = Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(#‘𝑥)))
124 elfznn0 12257 . . . . . . . . . 10 (𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ ℕ0)
125124adantl 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → 𝑧 ∈ ℕ0)
126 expcl 12695 . . . . . . . . 9 ((-1 ∈ ℂ ∧ 𝑧 ∈ ℕ0) → (-1↑𝑧) ∈ ℂ)
12760, 125, 126sylancr 693 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → (-1↑𝑧) ∈ ℂ)
128 fsumconst 14310 . . . . . . . 8 (({𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} ∈ Fin ∧ (-1↑𝑧) ∈ ℂ) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} (-1↑𝑧) = ((#‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧}) · (-1↑𝑧)))
12976, 127, 128syl2anc 690 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} (-1↑𝑧) = ((#‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧}) · (-1↑𝑧)))
13081adantl 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧}) → (#‘𝑥) = 𝑧)
131130oveq2d 6543 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) ∧ 𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧}) → (-1↑(#‘𝑥)) = (-1↑𝑧))
132131sumeq2dv 14227 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} (-1↑(#‘𝑥)) = Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} (-1↑𝑧))
133 elfzelz 12168 . . . . . . . . 9 (𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) → 𝑧 ∈ ℤ)
134 hashbc 13046 . . . . . . . . 9 (({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin ∧ 𝑧 ∈ ℤ) → ((#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) = (#‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧}))
13561, 133, 134syl2an 492 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → ((#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) = (#‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧}))
136135oveq1d 6542 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → (((#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)) = ((#‘{𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧}) · (-1↑𝑧)))
137129, 132, 1363eqtr4d 2653 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))) → Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} (-1↑(#‘𝑥)) = (((#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
138137sumeq2dv 14227 . . . . 5 (𝑁 ∈ ℕ → Σ𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} (-1↑(#‘𝑥)) = Σ𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
139 1pneg1e0 10976 . . . . . . 7 (1 + -1) = 0
140139oveq1i 6537 . . . . . 6 ((1 + -1)↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = (0↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))
141 binom1p 14348 . . . . . . 7 ((-1 ∈ ℂ ∧ (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ0) → ((1 + -1)↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
14260, 108, 141sylancr 693 . . . . . 6 (𝑁 ∈ ℕ → ((1 + -1)↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
143140, 142syl5eqr 2657 . . . . 5 (𝑁 ∈ ℕ → (0↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = Σ𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))(((#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})C𝑧) · (-1↑𝑧)))
144 eqeq2 2620 . . . . . 6 (1 = if(𝑁 = 1, 1, 0) → ((0↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 1 ↔ (0↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0)))
145 eqeq2 2620 . . . . . 6 (0 = if(𝑁 = 1, 1, 0) → ((0↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 0 ↔ (0↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0)))
146 nprmdvds1 15202 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
147 simpr 475 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → 𝑁 = 1)
148147breq2d 4589 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (𝑝𝑁𝑝 ∥ 1))
149148notbid 306 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (¬ 𝑝𝑁 ↔ ¬ 𝑝 ∥ 1))
150146, 149syl5ibr 234 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (𝑝 ∈ ℙ → ¬ 𝑝𝑁))
151150ralrimiv 2947 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → ∀𝑝 ∈ ℙ ¬ 𝑝𝑁)
152 rabeq0 3910 . . . . . . . . . . 11 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} = ∅ ↔ ∀𝑝 ∈ ℙ ¬ 𝑝𝑁)
153151, 152sylibr 222 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} = ∅)
154153fveq2d 6092 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) = (#‘∅))
155 hash0 12971 . . . . . . . . 9 (#‘∅) = 0
156154, 155syl6eq 2659 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) = 0)
157156oveq2d 6543 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (0↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = (0↑0))
158 0exp0e1 12682 . . . . . . 7 (0↑0) = 1
159157, 158syl6eq 2659 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑁 = 1) → (0↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 1)
160 df-ne 2781 . . . . . . . . . . 11 (𝑁 ≠ 1 ↔ ¬ 𝑁 = 1)
161 eluz2b3 11594 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
162161biimpri 216 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑁 ≠ 1) → 𝑁 ∈ (ℤ‘2))
163160, 162sylan2br 491 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → 𝑁 ∈ (ℤ‘2))
164 exprmfct 15200 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝𝑁)
165163, 164syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ∃𝑝 ∈ ℙ 𝑝𝑁)
166 rabn0 3911 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅ ↔ ∃𝑝 ∈ ℙ 𝑝𝑁)
167165, 166sylibr 222 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅)
16861adantr 479 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin)
169 hashnncl 12970 . . . . . . . . 9 ({𝑝 ∈ ℙ ∣ 𝑝𝑁} ∈ Fin → ((#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅))
170168, 169syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → ((#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ ↔ {𝑝 ∈ ℙ ∣ 𝑝𝑁} ≠ ∅))
171167, 170mpbird 245 . . . . . . 7 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}) ∈ ℕ)
1721710expd 12841 . . . . . 6 ((𝑁 ∈ ℕ ∧ ¬ 𝑁 = 1) → (0↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = 0)
173144, 145, 159, 172ifbothda 4072 . . . . 5 (𝑁 ∈ ℕ → (0↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁})) = if(𝑁 = 1, 1, 0))
174138, 143, 1733eqtr2d 2649 . . . 4 (𝑁 ∈ ℕ → Σ𝑧 ∈ (0...(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑁}))Σ𝑥 ∈ {𝑠 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} ∣ (#‘𝑠) = 𝑧} (-1↑(#‘𝑥)) = if(𝑁 = 1, 1, 0))
17592, 123, 1743eqtr3d 2651 . . 3 (𝑁 ∈ ℕ → Σ𝑥 ∈ 𝒫 {𝑝 ∈ ℙ ∣ 𝑝𝑁} (-1↑(#‘𝑥)) = if(𝑁 = 1, 1, 0))
17669, 175eqtr3d 2645 . 2 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ ((μ‘𝑛) ≠ 0 ∧ 𝑛𝑁)} (-1↑(#‘{𝑝 ∈ ℙ ∣ 𝑝𝑘})) = if(𝑁 = 1, 1, 0))
17710, 37, 1763eqtr3d 2651 1 (𝑁 ∈ ℕ → Σ𝑘 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑁} (μ‘𝑘) = if(𝑁 = 1, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  {crab 2899  cdif 3536  wss 3539  c0 3873  ifcif 4035  𝒫 cpw 4107   ciun 4449  Disj wdisj 4547   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  cdom 7816  Fincfn 7818  cc 9790  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  cle 9931  -cneg 10118  cn 10867  2c2 10917  0cn0 11139  cz 11210  cuz 11519  ...cfz 12152  cexp 12677  Ccbc 12906  #chash 12934  Σcsu 14210  cdvds 14767  cprime 15169   pCnt cpc 15325  μcmu 24538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-disj 4548  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-q 11621  df-rp 11665  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-sum 14211  df-dvds 14768  df-gcd 15001  df-prm 15170  df-pc 15326  df-mu 24544
This theorem is referenced by:  musumsum  24635  muinv  24636
  Copyright terms: Public domain W3C validator