MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muval2 Structured version   Visualization version   GIF version

Theorem muval2 25059
Description: The value of the Möbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
muval2 ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
Distinct variable group:   𝐴,𝑝

Proof of Theorem muval2
StepHypRef Expression
1 df-ne 2933 . . 3 ((μ‘𝐴) ≠ 0 ↔ ¬ (μ‘𝐴) = 0)
2 ifeqor 4276 . . . . 5 (if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0 ∨ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
3 muval 25057 . . . . . . 7 (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
43eqeq1d 2762 . . . . . 6 (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0))
53eqeq1d 2762 . . . . . 6 (𝐴 ∈ ℕ → ((μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})) ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
64, 5orbi12d 748 . . . . 5 (𝐴 ∈ ℕ → (((μ‘𝐴) = 0 ∨ (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) ↔ (if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = 0 ∨ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))))
72, 6mpbiri 248 . . . 4 (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ∨ (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
87ord 391 . . 3 (𝐴 ∈ ℕ → (¬ (μ‘𝐴) = 0 → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
91, 8syl5bi 232 . 2 (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴}))))
109imp 444 1 ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝐴})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1632  wcel 2139  wne 2932  wrex 3051  {crab 3054  ifcif 4230   class class class wbr 4804  cfv 6049  (class class class)co 6813  0cc0 10128  1c1 10129  -cneg 10459  cn 11212  2c2 11262  cexp 13054  chash 13311  cdvds 15182  cprime 15587  μcmu 25020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-mulcl 10190  ax-i2m1 10196
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-ov 6816  df-mu 25026
This theorem is referenced by:  mumul  25106  musum  25116
  Copyright terms: Public domain W3C validator