MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrcl Structured version   Visualization version   GIF version

Theorem mvrcl 19216
Description: A power series variable is a polynomial. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mvrcl.s 𝑃 = (𝐼 mPoly 𝑅)
mvrcl.v 𝑉 = (𝐼 mVar 𝑅)
mvrcl.b 𝐵 = (Base‘𝑃)
mvrcl.i (𝜑𝐼𝑊)
mvrcl.r (𝜑𝑅 ∈ Ring)
mvrcl.x (𝜑𝑋𝐼)
Assertion
Ref Expression
mvrcl (𝜑 → (𝑉𝑋) ∈ 𝐵)

Proof of Theorem mvrcl
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2609 . . 3 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
2 mvrcl.v . . 3 𝑉 = (𝐼 mVar 𝑅)
3 eqid 2609 . . 3 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
4 mvrcl.i . . 3 (𝜑𝐼𝑊)
5 mvrcl.r . . 3 (𝜑𝑅 ∈ Ring)
6 mvrcl.x . . 3 (𝜑𝑋𝐼)
71, 2, 3, 4, 5, 6mvrcl2 19193 . 2 (𝜑 → (𝑉𝑋) ∈ (Base‘(𝐼 mPwSer 𝑅)))
8 fvex 6098 . . . 4 (𝑉𝑋) ∈ V
98a1i 11 . . 3 (𝜑 → (𝑉𝑋) ∈ V)
10 eqid 2609 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2609 . . . . 5 {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
121, 10, 11, 3, 7psrelbas 19146 . . . 4 (𝜑 → (𝑉𝑋):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
13 ffun 5947 . . . 4 ((𝑉𝑋):{𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅) → Fun (𝑉𝑋))
1412, 13syl 17 . . 3 (𝜑 → Fun (𝑉𝑋))
15 fvex 6098 . . . 4 (0g𝑅) ∈ V
1615a1i 11 . . 3 (𝜑 → (0g𝑅) ∈ V)
17 snfi 7900 . . . 4 {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin
1817a1i 11 . . 3 (𝜑 → {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin)
19 eqid 2609 . . . . . 6 (0g𝑅) = (0g𝑅)
20 eqid 2609 . . . . . 6 (1r𝑅) = (1r𝑅)
214adantr 479 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝐼𝑊)
225adantr 479 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑅 ∈ Ring)
236adantr 479 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑋𝐼)
24 simpr 475 . . . . . . . 8 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}))
25 eldifsn 4259 . . . . . . . 8 (𝑥 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))}) ↔ (𝑥 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ≠ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
2624, 25sylib 206 . . . . . . 7 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑥 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∧ 𝑥 ≠ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
2726simpld 473 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ∈ {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
282, 11, 19, 20, 21, 22, 23, 27mvrval2 19189 . . . . 5 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ((𝑉𝑋)‘𝑥) = if(𝑥 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r𝑅), (0g𝑅)))
2926simprd 477 . . . . . . 7 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → 𝑥 ≠ (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
3029neneqd 2786 . . . . . 6 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ¬ 𝑥 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
3130iffalsed 4046 . . . . 5 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → if(𝑥 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), (1r𝑅), (0g𝑅)) = (0g𝑅))
3228, 31eqtrd 2643 . . . 4 ((𝜑𝑥 ∈ ({𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → ((𝑉𝑋)‘𝑥) = (0g𝑅))
3312, 32suppss 7189 . . 3 (𝜑 → ((𝑉𝑋) supp (0g𝑅)) ⊆ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})
34 suppssfifsupp 8150 . . 3 ((((𝑉𝑋) ∈ V ∧ Fun (𝑉𝑋) ∧ (0g𝑅) ∈ V) ∧ ({(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))} ∈ Fin ∧ ((𝑉𝑋) supp (0g𝑅)) ⊆ {(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))})) → (𝑉𝑋) finSupp (0g𝑅))
359, 14, 16, 18, 33, 34syl32anc 1325 . 2 (𝜑 → (𝑉𝑋) finSupp (0g𝑅))
36 mvrcl.s . . 3 𝑃 = (𝐼 mPoly 𝑅)
37 mvrcl.b . . 3 𝐵 = (Base‘𝑃)
3836, 1, 3, 19, 37mplelbas 19197 . 2 ((𝑉𝑋) ∈ 𝐵 ↔ ((𝑉𝑋) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑉𝑋) finSupp (0g𝑅)))
397, 35, 38sylanbrc 694 1 (𝜑 → (𝑉𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wne 2779  {crab 2899  Vcvv 3172  cdif 3536  wss 3539  ifcif 4035  {csn 4124   class class class wbr 4577  cmpt 4637  ccnv 5027  cima 5031  Fun wfun 5784  wf 5786  cfv 5790  (class class class)co 6527   supp csupp 7159  𝑚 cmap 7721  Fincfn 7818   finSupp cfsupp 8135  0cc0 9792  1c1 9793  cn 10867  0cn0 11139  Basecbs 15641  0gc0g 15869  1rcur 18270  Ringcrg 18316   mPwSer cmps 19118   mVar cmvr 19119   mPoly cmpl 19120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-sca 15730  df-vsca 15731  df-tset 15733  df-0g 15871  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-grp 17194  df-mgp 18259  df-ur 18271  df-ring 18318  df-psr 19123  df-mvr 19124  df-mpl 19125
This theorem is referenced by:  subrgmvrf  19229  mplcoe3  19233  mplcoe5lem  19234  mplcoe5  19235  mplcoe2  19236  mplbas2  19237  mvrf2  19259  mpfproj  19298  mpfind  19303  vr1cl  19354
  Copyright terms: Public domain W3C validator