MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mvrid Structured version   Visualization version   GIF version

Theorem mvrid 19187
Description: The 𝑋𝑖-th coefficient of the term 𝑋𝑖 is 1. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
mvrfval.v 𝑉 = (𝐼 mVar 𝑅)
mvrfval.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
mvrfval.z 0 = (0g𝑅)
mvrfval.o 1 = (1r𝑅)
mvrfval.i (𝜑𝐼𝑊)
mvrfval.r (𝜑𝑅𝑌)
mvrval.x (𝜑𝑋𝐼)
Assertion
Ref Expression
mvrid (𝜑 → ((𝑉𝑋)‘(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1 )
Distinct variable groups:   𝑦,𝐷   𝑦,𝑊   𝑦,,𝐼   ,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,)   𝐷()   𝑅(𝑦,)   1 (𝑦,)   𝑉(𝑦,)   𝑊()   𝑌(𝑦,)   0 (𝑦,)

Proof of Theorem mvrid
StepHypRef Expression
1 mvrfval.v . . 3 𝑉 = (𝐼 mVar 𝑅)
2 mvrfval.d . . 3 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 mvrfval.z . . 3 0 = (0g𝑅)
4 mvrfval.o . . 3 1 = (1r𝑅)
5 mvrfval.i . . 3 (𝜑𝐼𝑊)
6 mvrfval.r . . 3 (𝜑𝑅𝑌)
7 mvrval.x . . 3 (𝜑𝑋𝐼)
8 1nn0 11152 . . . 4 1 ∈ ℕ0
92snifpsrbag 19130 . . . 4 ((𝐼𝑊 ∧ 1 ∈ ℕ0) → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ 𝐷)
105, 8, 9sylancl 692 . . 3 (𝜑 → (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) ∈ 𝐷)
111, 2, 3, 4, 5, 6, 7, 10mvrval2 19186 . 2 (𝜑 → ((𝑉𝑋)‘(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = if((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
12 eqid 2606 . . 3 (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))
1312iftruei 4039 . 2 if((𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ) = 1
1411, 13syl6eq 2656 1 (𝜑 → ((𝑉𝑋)‘(𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) = 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  {crab 2896  ifcif 4032  cmpt 4634  ccnv 5024  cima 5028  cfv 5787  (class class class)co 6524  𝑚 cmap 7718  Fincfn 7815  0cc0 9789  1c1 9790  cn 10864  0cn0 11136  0gc0g 15866  1rcur 18267   mVar cmvr 19116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-supp 7157  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-er 7603  df-map 7720  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-fsupp 8133  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-nn 10865  df-n0 11137  df-mvr 19121
This theorem is referenced by:  mvrf1  19189
  Copyright terms: Public domain W3C validator