Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl1 Structured version   Visualization version   GIF version

Theorem mzpcl1 37790
Description: Defining property 1 of a polynomially closed function set 𝑃: it contains all constant functions. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑𝑚 𝑉) × {𝐹}) ∈ 𝑃)

Proof of Theorem mzpcl1
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 479 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝐹 ∈ ℤ)
2 simpl 474 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝑃 ∈ (mzPolyCld‘𝑉))
3 elfvex 6378 . . . . . 6 (𝑃 ∈ (mzPolyCld‘𝑉) → 𝑉 ∈ V)
43adantr 472 . . . . 5 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → 𝑉 ∈ V)
5 elmzpcl 37787 . . . . 5 (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃)))))
64, 5syl 17 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃)))))
72, 6mpbid 222 . . 3 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → (𝑃 ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃))))
8 simprll 821 . . 3 ((𝑃 ⊆ (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓𝑓 + 𝑔) ∈ 𝑃 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑃))) → ∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃)
97, 8syl 17 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃)
10 sneq 4327 . . . . 5 (𝑓 = 𝐹 → {𝑓} = {𝐹})
1110xpeq2d 5292 . . . 4 (𝑓 = 𝐹 → ((ℤ ↑𝑚 𝑉) × {𝑓}) = ((ℤ ↑𝑚 𝑉) × {𝐹}))
1211eleq1d 2820 . . 3 (𝑓 = 𝐹 → (((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃 ↔ ((ℤ ↑𝑚 𝑉) × {𝐹}) ∈ 𝑃))
1312rspcva 3443 . 2 ((𝐹 ∈ ℤ ∧ ∀𝑓 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑓}) ∈ 𝑃) → ((ℤ ↑𝑚 𝑉) × {𝐹}) ∈ 𝑃)
141, 9, 13syl2anc 696 1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹 ∈ ℤ) → ((ℤ ↑𝑚 𝑉) × {𝐹}) ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1628  wcel 2135  wral 3046  Vcvv 3336  wss 3711  {csn 4317  cmpt 4877   × cxp 5260  cfv 6045  (class class class)co 6809  𝑓 cof 7056  𝑚 cmap 8019   + caddc 10127   · cmul 10129  cz 11565  mzPolyCldcmzpcl 37782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-ral 3051  df-rex 3052  df-rab 3055  df-v 3338  df-sbc 3573  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-br 4801  df-opab 4861  df-mpt 4878  df-id 5170  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-iota 6008  df-fun 6047  df-fv 6053  df-ov 6812  df-mzpcl 37784
This theorem is referenced by:  mzpincl  37795  mzpconst  37796
  Copyright terms: Public domain W3C validator