Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpclval Structured version   Visualization version   GIF version

Theorem mzpclval 37790
Description: Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpclval (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
Distinct variable groups:   𝑉,𝑝,𝑓,𝑔   𝑖,𝑉,𝑝   𝑗,𝑉,𝑥,𝑝

Proof of Theorem mzpclval
Dummy variables 𝑣 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6821 . . . . 5 (𝑣 = 𝑉 → (ℤ ↑𝑚 𝑣) = (ℤ ↑𝑚 𝑉))
21oveq2d 6829 . . . 4 (𝑣 = 𝑉 → (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) = (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)))
32pweqd 4307 . . 3 (𝑣 = 𝑉 → 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) = 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)))
41xpeq1d 5295 . . . . . . . 8 (𝑣 = 𝑉 → ((ℤ ↑𝑚 𝑣) × {𝑎}) = ((ℤ ↑𝑚 𝑉) × {𝑎}))
54eleq1d 2824 . . . . . . 7 (𝑣 = 𝑉 → (((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ↔ ((ℤ ↑𝑚 𝑉) × {𝑎}) ∈ 𝑝))
65ralbidv 3124 . . . . . 6 (𝑣 = 𝑉 → (∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ↔ ∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑎}) ∈ 𝑝))
7 sneq 4331 . . . . . . . . 9 (𝑎 = 𝑖 → {𝑎} = {𝑖})
87xpeq2d 5296 . . . . . . . 8 (𝑎 = 𝑖 → ((ℤ ↑𝑚 𝑉) × {𝑎}) = ((ℤ ↑𝑚 𝑉) × {𝑖}))
98eleq1d 2824 . . . . . . 7 (𝑎 = 𝑖 → (((ℤ ↑𝑚 𝑉) × {𝑎}) ∈ 𝑝 ↔ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝))
109cbvralv 3310 . . . . . 6 (∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑎}) ∈ 𝑝 ↔ ∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝)
116, 10syl6bb 276 . . . . 5 (𝑣 = 𝑉 → (∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ↔ ∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝))
121mpteq1d 4890 . . . . . . . 8 (𝑣 = 𝑉 → (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)))
1312eleq1d 2824 . . . . . . 7 (𝑣 = 𝑉 → ((𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝))
1413raleqbi1dv 3285 . . . . . 6 (𝑣 = 𝑉 → (∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑏𝑉 (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝))
15 fveq2 6352 . . . . . . . . . 10 (𝑏 = 𝑗 → (𝑐𝑏) = (𝑐𝑗))
1615mpteq2dv 4897 . . . . . . . . 9 (𝑏 = 𝑗 → (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑗)))
1716eleq1d 2824 . . . . . . . 8 (𝑏 = 𝑗 → ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑗)) ∈ 𝑝))
18 fveq1 6351 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐𝑗) = (𝑥𝑗))
1918cbvmptv 4902 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑗)) = (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗))
2019eleq1i 2830 . . . . . . . 8 ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑗)) ∈ 𝑝 ↔ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)
2117, 20syl6bb 276 . . . . . . 7 (𝑏 = 𝑗 → ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝))
2221cbvralv 3310 . . . . . 6 (∀𝑏𝑉 (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)
2314, 22syl6bb 276 . . . . 5 (𝑣 = 𝑉 → (∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝))
2411, 23anbi12d 749 . . . 4 (𝑣 = 𝑉 → ((∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ↔ (∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)))
2524anbi1d 743 . . 3 (𝑣 = 𝑉 → (((∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝)) ↔ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))))
263, 25rabeqbidv 3335 . 2 (𝑣 = 𝑉 → {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) ∣ ((∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))} = {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
27 df-mzpcl 37788 . 2 mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑣)) ∣ ((∀𝑎 ∈ ℤ ((ℤ ↑𝑚 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑𝑚 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
28 ovex 6841 . . . 4 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∈ V
2928pwex 4997 . . 3 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∈ V
3029rabex 4964 . 2 {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))} ∈ V
3126, 27, 30fvmpt 6444 1 (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑𝑚 (ℤ ↑𝑚 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑𝑚 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓𝑓 + 𝑔) ∈ 𝑝 ∧ (𝑓𝑓 · 𝑔) ∈ 𝑝))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wral 3050  {crab 3054  Vcvv 3340  𝒫 cpw 4302  {csn 4321  cmpt 4881   × cxp 5264  cfv 6049  (class class class)co 6813  𝑓 cof 7060  𝑚 cmap 8023   + caddc 10131   · cmul 10133  cz 11569  mzPolyCldcmzpcl 37786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-ov 6816  df-mzpcl 37788
This theorem is referenced by:  elmzpcl  37791
  Copyright terms: Public domain W3C validator