Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpclval Structured version   Visualization version   GIF version

Theorem mzpclval 39329
Description: Substitution lemma for mzPolyCld. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpclval (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))})
Distinct variable groups:   𝑉,𝑝,𝑓,𝑔   𝑖,𝑉,𝑝   𝑗,𝑉,𝑥,𝑝

Proof of Theorem mzpclval
Dummy variables 𝑣 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7166 . . . . 5 (𝑣 = 𝑉 → (ℤ ↑m 𝑣) = (ℤ ↑m 𝑉))
21oveq2d 7174 . . . 4 (𝑣 = 𝑉 → (ℤ ↑m (ℤ ↑m 𝑣)) = (ℤ ↑m (ℤ ↑m 𝑉)))
32pweqd 4560 . . 3 (𝑣 = 𝑉 → 𝒫 (ℤ ↑m (ℤ ↑m 𝑣)) = 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)))
41xpeq1d 5586 . . . . . . . 8 (𝑣 = 𝑉 → ((ℤ ↑m 𝑣) × {𝑎}) = ((ℤ ↑m 𝑉) × {𝑎}))
54eleq1d 2899 . . . . . . 7 (𝑣 = 𝑉 → (((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ↔ ((ℤ ↑m 𝑉) × {𝑎}) ∈ 𝑝))
65ralbidv 3199 . . . . . 6 (𝑣 = 𝑉 → (∀𝑎 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ↔ ∀𝑎 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑎}) ∈ 𝑝))
7 sneq 4579 . . . . . . . . 9 (𝑎 = 𝑖 → {𝑎} = {𝑖})
87xpeq2d 5587 . . . . . . . 8 (𝑎 = 𝑖 → ((ℤ ↑m 𝑉) × {𝑎}) = ((ℤ ↑m 𝑉) × {𝑖}))
98eleq1d 2899 . . . . . . 7 (𝑎 = 𝑖 → (((ℤ ↑m 𝑉) × {𝑎}) ∈ 𝑝 ↔ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝))
109cbvralvw 3451 . . . . . 6 (∀𝑎 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑎}) ∈ 𝑝 ↔ ∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝)
116, 10syl6bb 289 . . . . 5 (𝑣 = 𝑉 → (∀𝑎 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ↔ ∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝))
121mpteq1d 5157 . . . . . . . 8 (𝑣 = 𝑉 → (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)))
1312eleq1d 2899 . . . . . . 7 (𝑣 = 𝑉 → ((𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝))
1413raleqbi1dv 3405 . . . . . 6 (𝑣 = 𝑉 → (∀𝑏𝑣 (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑏𝑉 (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝))
15 fveq2 6672 . . . . . . . . . 10 (𝑏 = 𝑗 → (𝑐𝑏) = (𝑐𝑗))
1615mpteq2dv 5164 . . . . . . . . 9 (𝑏 = 𝑗 → (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑗)))
1716eleq1d 2899 . . . . . . . 8 (𝑏 = 𝑗 → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑗)) ∈ 𝑝))
18 fveq1 6671 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑐𝑗) = (𝑥𝑗))
1918cbvmptv 5171 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑗)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗))
2019eleq1i 2905 . . . . . . . 8 ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑗)) ∈ 𝑝 ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)
2117, 20syl6bb 289 . . . . . . 7 (𝑏 = 𝑗 → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝))
2221cbvralvw 3451 . . . . . 6 (∀𝑏𝑉 (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)
2314, 22syl6bb 289 . . . . 5 (𝑣 = 𝑉 → (∀𝑏𝑣 (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝 ↔ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝))
2411, 23anbi12d 632 . . . 4 (𝑣 = 𝑉 → ((∀𝑎 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ↔ (∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝)))
2524anbi1d 631 . . 3 (𝑣 = 𝑉 → (((∀𝑎 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝)) ↔ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))))
263, 25rabeqbidv 3487 . 2 (𝑣 = 𝑉 → {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑣)) ∣ ((∀𝑎 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))} = {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))})
27 df-mzpcl 39327 . 2 mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑣)) ∣ ((∀𝑎 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑎}) ∈ 𝑝 ∧ ∀𝑏𝑣 (𝑐 ∈ (ℤ ↑m 𝑣) ↦ (𝑐𝑏)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))})
28 ovex 7191 . . . 4 (ℤ ↑m (ℤ ↑m 𝑉)) ∈ V
2928pwex 5283 . . 3 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∈ V
3029rabex 5237 . 2 {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))} ∈ V
3126, 27, 30fvmpt 6770 1 (𝑉 ∈ V → (mzPolyCld‘𝑉) = {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑉)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑉 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  {crab 3144  Vcvv 3496  𝒫 cpw 4541  {csn 4569  cmpt 5148   × cxp 5555  cfv 6357  (class class class)co 7158  f cof 7409  m cmap 8408   + caddc 10542   · cmul 10544  cz 11984  mzPolyCldcmzpcl 39325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-mzpcl 39327
This theorem is referenced by:  elmzpcl  39330
  Copyright terms: Public domain W3C validator