Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcong Structured version   Visualization version   GIF version

Theorem mzpcong 37040
Description: Polynomials commute with congruences. (Does this characterize them?) (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpcong ((𝐹 ∈ (mzPoly‘𝑉) ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) → 𝑁 ∥ ((𝐹𝑋) − (𝐹𝑌)))
Distinct variable groups:   𝑘,𝑋   𝑘,𝑉   𝑘,𝑌   𝑘,𝑁
Allowed substitution hint:   𝐹(𝑘)

Proof of Theorem mzpcong
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6180 . . 3 (𝐹 ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
213anim1i 1246 . 2 ((𝐹 ∈ (mzPoly‘𝑉) ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) → (𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))))
3 simp1 1059 . 2 ((𝐹 ∈ (mzPoly‘𝑉) ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) → 𝐹 ∈ (mzPoly‘𝑉))
4 simpl3l 1114 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → 𝑁 ∈ ℤ)
5 simpr 477 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → 𝑏 ∈ ℤ)
6 congid 37039 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑏 ∈ ℤ) → 𝑁 ∥ (𝑏𝑏))
74, 5, 6syl2anc 692 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → 𝑁 ∥ (𝑏𝑏))
8 simpl2l 1112 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → 𝑋 ∈ (ℤ ↑𝑚 𝑉))
9 vex 3189 . . . . . . 7 𝑏 ∈ V
109fvconst2 6426 . . . . . 6 (𝑋 ∈ (ℤ ↑𝑚 𝑉) → (((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑋) = 𝑏)
118, 10syl 17 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → (((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑋) = 𝑏)
12 simpl2r 1113 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → 𝑌 ∈ (ℤ ↑𝑚 𝑉))
139fvconst2 6426 . . . . . 6 (𝑌 ∈ (ℤ ↑𝑚 𝑉) → (((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑌) = 𝑏)
1412, 13syl 17 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → (((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑌) = 𝑏)
1511, 14oveq12d 6625 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → ((((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑋) − (((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑌)) = (𝑏𝑏))
167, 15breqtrrd 4643 . . 3 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏 ∈ ℤ) → 𝑁 ∥ ((((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑋) − (((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑌)))
17 simpr 477 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → 𝑏𝑉)
18 simpl3r 1115 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))
19 fveq2 6150 . . . . . . . 8 (𝑘 = 𝑏 → (𝑋𝑘) = (𝑋𝑏))
20 fveq2 6150 . . . . . . . 8 (𝑘 = 𝑏 → (𝑌𝑘) = (𝑌𝑏))
2119, 20oveq12d 6625 . . . . . . 7 (𝑘 = 𝑏 → ((𝑋𝑘) − (𝑌𝑘)) = ((𝑋𝑏) − (𝑌𝑏)))
2221breq2d 4627 . . . . . 6 (𝑘 = 𝑏 → (𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)) ↔ 𝑁 ∥ ((𝑋𝑏) − (𝑌𝑏))))
2322rspcva 3293 . . . . 5 ((𝑏𝑉 ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘))) → 𝑁 ∥ ((𝑋𝑏) − (𝑌𝑏)))
2417, 18, 23syl2anc 692 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → 𝑁 ∥ ((𝑋𝑏) − (𝑌𝑏)))
25 simpl2l 1112 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → 𝑋 ∈ (ℤ ↑𝑚 𝑉))
26 fveq1 6149 . . . . . . 7 (𝑐 = 𝑋 → (𝑐𝑏) = (𝑋𝑏))
27 eqid 2621 . . . . . . 7 (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))
28 fvex 6160 . . . . . . 7 (𝑋𝑏) ∈ V
2926, 27, 28fvmpt 6241 . . . . . 6 (𝑋 ∈ (ℤ ↑𝑚 𝑉) → ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑋) = (𝑋𝑏))
3025, 29syl 17 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑋) = (𝑋𝑏))
31 simpl2r 1113 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → 𝑌 ∈ (ℤ ↑𝑚 𝑉))
32 fveq1 6149 . . . . . . 7 (𝑐 = 𝑌 → (𝑐𝑏) = (𝑌𝑏))
33 fvex 6160 . . . . . . 7 (𝑌𝑏) ∈ V
3432, 27, 33fvmpt 6241 . . . . . 6 (𝑌 ∈ (ℤ ↑𝑚 𝑉) → ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑌) = (𝑌𝑏))
3531, 34syl 17 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑌) = (𝑌𝑏))
3630, 35oveq12d 6625 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → (((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑋) − ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑌)) = ((𝑋𝑏) − (𝑌𝑏)))
3724, 36breqtrrd 4643 . . 3 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝑏𝑉) → 𝑁 ∥ (((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑋) − ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑌)))
38 simp13l 1174 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∈ ℤ)
39 simp2l 1085 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ)
40 simp12l 1172 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑋 ∈ (ℤ ↑𝑚 𝑉))
4139, 40ffvelrnd 6318 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (𝑏𝑋) ∈ ℤ)
42 simp12r 1173 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑌 ∈ (ℤ ↑𝑚 𝑉))
4339, 42ffvelrnd 6318 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (𝑏𝑌) ∈ ℤ)
44 simp3l 1087 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ)
4544, 40ffvelrnd 6318 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (𝑐𝑋) ∈ ℤ)
4644, 42ffvelrnd 6318 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (𝑐𝑌) ∈ ℤ)
47 simp2r 1086 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌)))
48 simp3r 1088 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))
49 congadd 37034 . . . . 5 (((𝑁 ∈ ℤ ∧ (𝑏𝑋) ∈ ℤ ∧ (𝑏𝑌) ∈ ℤ) ∧ ((𝑐𝑋) ∈ ℤ ∧ (𝑐𝑌) ∈ ℤ) ∧ (𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌)) ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ (((𝑏𝑋) + (𝑐𝑋)) − ((𝑏𝑌) + (𝑐𝑌))))
5038, 41, 43, 45, 46, 47, 48, 49syl322anc 1351 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ (((𝑏𝑋) + (𝑐𝑋)) − ((𝑏𝑌) + (𝑐𝑌))))
51 ffn 6004 . . . . . . 7 (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ → 𝑏 Fn (ℤ ↑𝑚 𝑉))
5239, 51syl 17 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑏 Fn (ℤ ↑𝑚 𝑉))
53 ffn 6004 . . . . . . 7 (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ → 𝑐 Fn (ℤ ↑𝑚 𝑉))
5444, 53syl 17 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑐 Fn (ℤ ↑𝑚 𝑉))
55 ovex 6635 . . . . . . 7 (ℤ ↑𝑚 𝑉) ∈ V
5655a1i 11 . . . . . 6 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (ℤ ↑𝑚 𝑉) ∈ V)
57 fnfvof 6867 . . . . . 6 (((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ ((ℤ ↑𝑚 𝑉) ∈ V ∧ 𝑋 ∈ (ℤ ↑𝑚 𝑉))) → ((𝑏𝑓 + 𝑐)‘𝑋) = ((𝑏𝑋) + (𝑐𝑋)))
5852, 54, 56, 40, 57syl22anc 1324 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → ((𝑏𝑓 + 𝑐)‘𝑋) = ((𝑏𝑋) + (𝑐𝑋)))
59 fnfvof 6867 . . . . . 6 (((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ ((ℤ ↑𝑚 𝑉) ∈ V ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉))) → ((𝑏𝑓 + 𝑐)‘𝑌) = ((𝑏𝑌) + (𝑐𝑌)))
6052, 54, 56, 42, 59syl22anc 1324 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → ((𝑏𝑓 + 𝑐)‘𝑌) = ((𝑏𝑌) + (𝑐𝑌)))
6158, 60oveq12d 6625 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (((𝑏𝑓 + 𝑐)‘𝑋) − ((𝑏𝑓 + 𝑐)‘𝑌)) = (((𝑏𝑋) + (𝑐𝑋)) − ((𝑏𝑌) + (𝑐𝑌))))
6250, 61breqtrrd 4643 . . 3 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ (((𝑏𝑓 + 𝑐)‘𝑋) − ((𝑏𝑓 + 𝑐)‘𝑌)))
63 congmul 37035 . . . . 5 (((𝑁 ∈ ℤ ∧ (𝑏𝑋) ∈ ℤ ∧ (𝑏𝑌) ∈ ℤ) ∧ ((𝑐𝑋) ∈ ℤ ∧ (𝑐𝑌) ∈ ℤ) ∧ (𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌)) ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ (((𝑏𝑋) · (𝑐𝑋)) − ((𝑏𝑌) · (𝑐𝑌))))
6438, 41, 43, 45, 46, 47, 48, 63syl322anc 1351 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ (((𝑏𝑋) · (𝑐𝑋)) − ((𝑏𝑌) · (𝑐𝑌))))
65 fnfvof 6867 . . . . . 6 (((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ ((ℤ ↑𝑚 𝑉) ∈ V ∧ 𝑋 ∈ (ℤ ↑𝑚 𝑉))) → ((𝑏𝑓 · 𝑐)‘𝑋) = ((𝑏𝑋) · (𝑐𝑋)))
6652, 54, 56, 40, 65syl22anc 1324 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → ((𝑏𝑓 · 𝑐)‘𝑋) = ((𝑏𝑋) · (𝑐𝑋)))
67 fnfvof 6867 . . . . . 6 (((𝑏 Fn (ℤ ↑𝑚 𝑉) ∧ 𝑐 Fn (ℤ ↑𝑚 𝑉)) ∧ ((ℤ ↑𝑚 𝑉) ∈ V ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉))) → ((𝑏𝑓 · 𝑐)‘𝑌) = ((𝑏𝑌) · (𝑐𝑌)))
6852, 54, 56, 42, 67syl22anc 1324 . . . . 5 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → ((𝑏𝑓 · 𝑐)‘𝑌) = ((𝑏𝑌) · (𝑐𝑌)))
6966, 68oveq12d 6625 . . . 4 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → (((𝑏𝑓 · 𝑐)‘𝑋) − ((𝑏𝑓 · 𝑐)‘𝑌)) = (((𝑏𝑋) · (𝑐𝑋)) − ((𝑏𝑌) · (𝑐𝑌))))
7064, 69breqtrrd 4643 . . 3 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ (𝑏:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))) ∧ (𝑐:(ℤ ↑𝑚 𝑉)⟶ℤ ∧ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌)))) → 𝑁 ∥ (((𝑏𝑓 · 𝑐)‘𝑋) − ((𝑏𝑓 · 𝑐)‘𝑌)))
71 fveq1 6149 . . . . 5 (𝑎 = ((ℤ ↑𝑚 𝑉) × {𝑏}) → (𝑎𝑋) = (((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑋))
72 fveq1 6149 . . . . 5 (𝑎 = ((ℤ ↑𝑚 𝑉) × {𝑏}) → (𝑎𝑌) = (((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑌))
7371, 72oveq12d 6625 . . . 4 (𝑎 = ((ℤ ↑𝑚 𝑉) × {𝑏}) → ((𝑎𝑋) − (𝑎𝑌)) = ((((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑋) − (((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑌)))
7473breq2d 4627 . . 3 (𝑎 = ((ℤ ↑𝑚 𝑉) × {𝑏}) → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ ((((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑋) − (((ℤ ↑𝑚 𝑉) × {𝑏})‘𝑌))))
75 fveq1 6149 . . . . 5 (𝑎 = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) → (𝑎𝑋) = ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑋))
76 fveq1 6149 . . . . 5 (𝑎 = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) → (𝑎𝑌) = ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑌))
7775, 76oveq12d 6625 . . . 4 (𝑎 = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) → ((𝑎𝑋) − (𝑎𝑌)) = (((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑋) − ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑌)))
7877breq2d 4627 . . 3 (𝑎 = (𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏)) → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ (((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑋) − ((𝑐 ∈ (ℤ ↑𝑚 𝑉) ↦ (𝑐𝑏))‘𝑌))))
79 fveq1 6149 . . . . 5 (𝑎 = 𝑏 → (𝑎𝑋) = (𝑏𝑋))
80 fveq1 6149 . . . . 5 (𝑎 = 𝑏 → (𝑎𝑌) = (𝑏𝑌))
8179, 80oveq12d 6625 . . . 4 (𝑎 = 𝑏 → ((𝑎𝑋) − (𝑎𝑌)) = ((𝑏𝑋) − (𝑏𝑌)))
8281breq2d 4627 . . 3 (𝑎 = 𝑏 → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ ((𝑏𝑋) − (𝑏𝑌))))
83 fveq1 6149 . . . . 5 (𝑎 = 𝑐 → (𝑎𝑋) = (𝑐𝑋))
84 fveq1 6149 . . . . 5 (𝑎 = 𝑐 → (𝑎𝑌) = (𝑐𝑌))
8583, 84oveq12d 6625 . . . 4 (𝑎 = 𝑐 → ((𝑎𝑋) − (𝑎𝑌)) = ((𝑐𝑋) − (𝑐𝑌)))
8685breq2d 4627 . . 3 (𝑎 = 𝑐 → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ ((𝑐𝑋) − (𝑐𝑌))))
87 fveq1 6149 . . . . 5 (𝑎 = (𝑏𝑓 + 𝑐) → (𝑎𝑋) = ((𝑏𝑓 + 𝑐)‘𝑋))
88 fveq1 6149 . . . . 5 (𝑎 = (𝑏𝑓 + 𝑐) → (𝑎𝑌) = ((𝑏𝑓 + 𝑐)‘𝑌))
8987, 88oveq12d 6625 . . . 4 (𝑎 = (𝑏𝑓 + 𝑐) → ((𝑎𝑋) − (𝑎𝑌)) = (((𝑏𝑓 + 𝑐)‘𝑋) − ((𝑏𝑓 + 𝑐)‘𝑌)))
9089breq2d 4627 . . 3 (𝑎 = (𝑏𝑓 + 𝑐) → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ (((𝑏𝑓 + 𝑐)‘𝑋) − ((𝑏𝑓 + 𝑐)‘𝑌))))
91 fveq1 6149 . . . . 5 (𝑎 = (𝑏𝑓 · 𝑐) → (𝑎𝑋) = ((𝑏𝑓 · 𝑐)‘𝑋))
92 fveq1 6149 . . . . 5 (𝑎 = (𝑏𝑓 · 𝑐) → (𝑎𝑌) = ((𝑏𝑓 · 𝑐)‘𝑌))
9391, 92oveq12d 6625 . . . 4 (𝑎 = (𝑏𝑓 · 𝑐) → ((𝑎𝑋) − (𝑎𝑌)) = (((𝑏𝑓 · 𝑐)‘𝑋) − ((𝑏𝑓 · 𝑐)‘𝑌)))
9493breq2d 4627 . . 3 (𝑎 = (𝑏𝑓 · 𝑐) → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ (((𝑏𝑓 · 𝑐)‘𝑋) − ((𝑏𝑓 · 𝑐)‘𝑌))))
95 fveq1 6149 . . . . 5 (𝑎 = 𝐹 → (𝑎𝑋) = (𝐹𝑋))
96 fveq1 6149 . . . . 5 (𝑎 = 𝐹 → (𝑎𝑌) = (𝐹𝑌))
9795, 96oveq12d 6625 . . . 4 (𝑎 = 𝐹 → ((𝑎𝑋) − (𝑎𝑌)) = ((𝐹𝑋) − (𝐹𝑌)))
9897breq2d 4627 . . 3 (𝑎 = 𝐹 → (𝑁 ∥ ((𝑎𝑋) − (𝑎𝑌)) ↔ 𝑁 ∥ ((𝐹𝑋) − (𝐹𝑌))))
9916, 37, 62, 70, 74, 78, 82, 86, 90, 94, 98mzpindd 36810 . 2 (((𝑉 ∈ V ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) ∧ 𝐹 ∈ (mzPoly‘𝑉)) → 𝑁 ∥ ((𝐹𝑋) − (𝐹𝑌)))
1002, 3, 99syl2anc 692 1 ((𝐹 ∈ (mzPoly‘𝑉) ∧ (𝑋 ∈ (ℤ ↑𝑚 𝑉) ∧ 𝑌 ∈ (ℤ ↑𝑚 𝑉)) ∧ (𝑁 ∈ ℤ ∧ ∀𝑘𝑉 𝑁 ∥ ((𝑋𝑘) − (𝑌𝑘)))) → 𝑁 ∥ ((𝐹𝑋) − (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  {csn 4150   class class class wbr 4615  cmpt 4675   × cxp 5074   Fn wfn 5844  wf 5845  cfv 5849  (class class class)co 6607  𝑓 cof 6851  𝑚 cmap 7805   + caddc 9886   · cmul 9888  cmin 10213  cz 11324  cdvds 14910  mzPolycmzp 36786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-int 4443  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-of 6853  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-map 7807  df-en 7903  df-dom 7904  df-sdom 7905  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-nn 10968  df-n0 11240  df-z 11325  df-dvds 14911  df-mzpcl 36787  df-mzp 36788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator