Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpsubst Structured version   Visualization version   GIF version

Theorem mzpsubst 39338
Description: Substituting polynomials for the variables of a polynomial results in a polynomial. 𝐺 is expected to depend on 𝑦 and provide the polynomials which are being substituted. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpsubst ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
Distinct variable groups:   𝑥,𝑊,𝑦   𝑥,𝐹   𝑥,𝑉,𝑦   𝑥,𝐺
Allowed substitution hints:   𝐹(𝑦)   𝐺(𝑦)

Proof of Theorem mzpsubst
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → 𝑊 ∈ V)
2 elfvex 6698 . . 3 (𝐹 ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
323ad2ant2 1130 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → 𝑉 ∈ V)
4 simp3 1134 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
5 simp2 1133 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → 𝐹 ∈ (mzPoly‘𝑉))
6 simpr 487 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
7 simpll3 1210 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
8 simpll2 1209 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑉 ∈ V)
9 mzpf 39326 . . . . . . . . . . . . . 14 (𝐺 ∈ (mzPoly‘𝑊) → 𝐺:(ℤ ↑m 𝑊)⟶ℤ)
109ffvelrnda 6846 . . . . . . . . . . . . 13 ((𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝐺𝑥) ∈ ℤ)
1110expcom 416 . . . . . . . . . . . 12 (𝑥 ∈ (ℤ ↑m 𝑊) → (𝐺 ∈ (mzPoly‘𝑊) → (𝐺𝑥) ∈ ℤ))
1211ralimdv 3178 . . . . . . . . . . 11 (𝑥 ∈ (ℤ ↑m 𝑊) → (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) → ∀𝑦𝑉 (𝐺𝑥) ∈ ℤ))
1312imp 409 . . . . . . . . . 10 ((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → ∀𝑦𝑉 (𝐺𝑥) ∈ ℤ)
14 eqid 2821 . . . . . . . . . . 11 (𝑦𝑉 ↦ (𝐺𝑥)) = (𝑦𝑉 ↦ (𝐺𝑥))
1514fmpt 6869 . . . . . . . . . 10 (∀𝑦𝑉 (𝐺𝑥) ∈ ℤ ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
1613, 15sylib 220 . . . . . . . . 9 ((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
1716adantr 483 . . . . . . . 8 (((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
18 zex 11984 . . . . . . . . 9 ℤ ∈ V
19 simpr 487 . . . . . . . . 9 (((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → 𝑉 ∈ V)
20 elmapg 8413 . . . . . . . . 9 ((ℤ ∈ V ∧ 𝑉 ∈ V) → ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ))
2118, 19, 20sylancr 589 . . . . . . . 8 (((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ))
2217, 21mpbird 259 . . . . . . 7 (((𝑥 ∈ (ℤ ↑m 𝑊) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑉 ∈ V) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))
236, 7, 8, 22syl21anc 835 . . . . . 6 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))
24 vex 3498 . . . . . . 7 𝑏 ∈ V
2524fvconst2 6961 . . . . . 6 ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) → (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥))) = 𝑏)
2623, 25syl 17 . . . . 5 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥))) = 𝑏)
2726mpteq2dva 5154 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ 𝑏))
28 mzpconstmpt 39330 . . . . 5 ((𝑊 ∈ V ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ 𝑏) ∈ (mzPoly‘𝑊))
29283ad2antl1 1181 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ 𝑏) ∈ (mzPoly‘𝑊))
3027, 29eqeltrd 2913 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
31 simpr 487 . . . . . . . . 9 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
32 simpll3 1210 . . . . . . . . 9 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
33 simpll2 1209 . . . . . . . . 9 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑉 ∈ V)
3431, 32, 33, 22syl21anc 835 . . . . . . . 8 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))
35 fveq1 6664 . . . . . . . . 9 (𝑐 = (𝑦𝑉 ↦ (𝐺𝑥)) → (𝑐𝑏) = ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏))
36 eqid 2821 . . . . . . . . 9 (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))
37 fvex 6678 . . . . . . . . 9 ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏) ∈ V
3835, 36, 37fvmpt 6763 . . . . . . . 8 ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏))
3934, 38syl 17 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏))
40 simplr 767 . . . . . . . 8 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑏𝑉)
41 fvex 6678 . . . . . . . 8 (𝑏 / 𝑦𝐺𝑥) ∈ V
42 csbeq1 3886 . . . . . . . . . 10 (𝑎 = 𝑏𝑎 / 𝑦𝐺 = 𝑏 / 𝑦𝐺)
4342fveq1d 6667 . . . . . . . . 9 (𝑎 = 𝑏 → (𝑎 / 𝑦𝐺𝑥) = (𝑏 / 𝑦𝐺𝑥))
44 nfcv 2977 . . . . . . . . . 10 𝑎(𝐺𝑥)
45 nfcsb1v 3907 . . . . . . . . . . 11 𝑦𝑎 / 𝑦𝐺
46 nfcv 2977 . . . . . . . . . . 11 𝑦𝑥
4745, 46nffv 6675 . . . . . . . . . 10 𝑦(𝑎 / 𝑦𝐺𝑥)
48 csbeq1a 3897 . . . . . . . . . . 11 (𝑦 = 𝑎𝐺 = 𝑎 / 𝑦𝐺)
4948fveq1d 6667 . . . . . . . . . 10 (𝑦 = 𝑎 → (𝐺𝑥) = (𝑎 / 𝑦𝐺𝑥))
5044, 47, 49cbvmpt 5160 . . . . . . . . 9 (𝑦𝑉 ↦ (𝐺𝑥)) = (𝑎𝑉 ↦ (𝑎 / 𝑦𝐺𝑥))
5143, 50fvmptg 6761 . . . . . . . 8 ((𝑏𝑉 ∧ (𝑏 / 𝑦𝐺𝑥) ∈ V) → ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏) = (𝑏 / 𝑦𝐺𝑥))
5240, 41, 51sylancl 588 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑦𝑉 ↦ (𝐺𝑥))‘𝑏) = (𝑏 / 𝑦𝐺𝑥))
5339, 52eqtrd 2856 . . . . . 6 ((((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝑏 / 𝑦𝐺𝑥))
5453mpteq2dva 5154 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏 / 𝑦𝐺𝑥)))
55 simpr 487 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏𝑉)
56 simpl3 1189 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
57 nfcsb1v 3907 . . . . . . . . . 10 𝑦𝑏 / 𝑦𝐺
5857nfel1 2994 . . . . . . . . 9 𝑦𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊)
59 csbeq1a 3897 . . . . . . . . . 10 (𝑦 = 𝑏𝐺 = 𝑏 / 𝑦𝐺)
6059eleq1d 2897 . . . . . . . . 9 (𝑦 = 𝑏 → (𝐺 ∈ (mzPoly‘𝑊) ↔ 𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊)))
6158, 60rspc 3611 . . . . . . . 8 (𝑏𝑉 → (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) → 𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊)))
6255, 56, 61sylc 65 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊))
63 mzpf 39326 . . . . . . 7 (𝑏 / 𝑦𝐺 ∈ (mzPoly‘𝑊) → 𝑏 / 𝑦𝐺:(ℤ ↑m 𝑊)⟶ℤ)
6462, 63syl 17 . . . . . 6 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏 / 𝑦𝐺:(ℤ ↑m 𝑊)⟶ℤ)
6564feqmptd 6728 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → 𝑏 / 𝑦𝐺 = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏 / 𝑦𝐺𝑥)))
6654, 65eqtr4d 2859 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) = 𝑏 / 𝑦𝐺)
6766, 62eqeltrd 2913 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝑏𝑉) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
68 simp2l 1195 . . . . . 6 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑏:(ℤ ↑m 𝑉)⟶ℤ)
6968ffnd 6510 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑏 Fn (ℤ ↑m 𝑉))
70 simp3l 1197 . . . . . 6 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑐:(ℤ ↑m 𝑉)⟶ℤ)
7170ffnd 6510 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑐 Fn (ℤ ↑m 𝑉))
72 simp13 1201 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
73 simp12 1200 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → 𝑉 ∈ V)
74 simplll 773 . . . . . . 7 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑏 Fn (ℤ ↑m 𝑉))
75 simpllr 774 . . . . . . 7 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑐 Fn (ℤ ↑m 𝑉))
76 ovexd 7185 . . . . . . 7 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (ℤ ↑m 𝑉) ∈ V)
77 simpr 487 . . . . . . . . . 10 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
78 simplrl 775 . . . . . . . . . 10 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊))
7977, 78, 12sylc 65 . . . . . . . . 9 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ∀𝑦𝑉 (𝐺𝑥) ∈ ℤ)
8079, 15sylib 220 . . . . . . . 8 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ)
81 simplrr 776 . . . . . . . . 9 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑉 ∈ V)
8218, 81, 20sylancr 589 . . . . . . . 8 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉) ↔ (𝑦𝑉 ↦ (𝐺𝑥)):𝑉⟶ℤ))
8380, 82mpbird 259 . . . . . . 7 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))
84 fnfvof 7417 . . . . . . 7 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ ((ℤ ↑m 𝑉) ∈ V ∧ (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))) → ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
8574, 75, 76, 83, 84syl22anc 836 . . . . . 6 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
8685mpteq2dva 5154 . . . . 5 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
8769, 71, 72, 73, 86syl22anc 836 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
88 simp2r 1196 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
89 simp3r 1198 . . . . 5 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
90 mzpaddmpt 39331 . . . . 5 (((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9188, 89, 90syl2anc 586 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) + (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9287, 91eqeltrd 2913 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
93 fnfvof 7417 . . . . . . 7 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ ((ℤ ↑m 𝑉) ∈ V ∧ (𝑦𝑉 ↦ (𝐺𝑥)) ∈ (ℤ ↑m 𝑉))) → ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
9474, 75, 76, 83, 93syl22anc 836 . . . . . 6 ((((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
9594mpteq2dva 5154 . . . . 5 (((𝑏 Fn (ℤ ↑m 𝑉) ∧ 𝑐 Fn (ℤ ↑m 𝑉)) ∧ (∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊) ∧ 𝑉 ∈ V)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
9669, 71, 72, 73, 95syl22anc 836 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))))
97 mzpmulmpt 39332 . . . . 5 (((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9888, 89, 97syl2anc 586 . . . 4 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))) · (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))) ∈ (mzPoly‘𝑊))
9996, 98eqeltrd 2913 . . 3 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ (𝑏:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)) ∧ (𝑐:(ℤ ↑m 𝑉)⟶ℤ ∧ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
100 fveq1 6664 . . . . 5 (𝑎 = ((ℤ ↑m 𝑉) × {𝑏}) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥))))
101100mpteq2dv 5155 . . . 4 (𝑎 = ((ℤ ↑m 𝑉) × {𝑏}) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))))
102101eleq1d 2897 . . 3 (𝑎 = ((ℤ ↑m 𝑉) × {𝑏}) → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (((ℤ ↑m 𝑉) × {𝑏})‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
103 fveq1 6664 . . . . 5 (𝑎 = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥))))
104103mpteq2dv 5155 . . . 4 (𝑎 = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))))
105104eleq1d 2897 . . 3 (𝑎 = (𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏)) → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑐 ∈ (ℤ ↑m 𝑉) ↦ (𝑐𝑏))‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
106 fveq1 6664 . . . . 5 (𝑎 = 𝑏 → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥))))
107106mpteq2dv 5155 . . . 4 (𝑎 = 𝑏 → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))))
108107eleq1d 2897 . . 3 (𝑎 = 𝑏 → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
109 fveq1 6664 . . . . 5 (𝑎 = 𝑐 → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥))))
110109mpteq2dv 5155 . . . 4 (𝑎 = 𝑐 → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))))
111110eleq1d 2897 . . 3 (𝑎 = 𝑐 → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑐‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
112 fveq1 6664 . . . . 5 (𝑎 = (𝑏f + 𝑐) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))))
113112mpteq2dv 5155 . . . 4 (𝑎 = (𝑏f + 𝑐) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))))
114113eleq1d 2897 . . 3 (𝑎 = (𝑏f + 𝑐) → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f + 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
115 fveq1 6664 . . . . 5 (𝑎 = (𝑏f · 𝑐) → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥))))
116115mpteq2dv 5155 . . . 4 (𝑎 = (𝑏f · 𝑐) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))))
117116eleq1d 2897 . . 3 (𝑎 = (𝑏f · 𝑐) → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ ((𝑏f · 𝑐)‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
118 fveq1 6664 . . . . 5 (𝑎 = 𝐹 → (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥))) = (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥))))
119118mpteq2dv 5155 . . . 4 (𝑎 = 𝐹 → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))))
120119eleq1d 2897 . . 3 (𝑎 = 𝐹 → ((𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝑎‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊) ↔ (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊)))
12130, 67, 92, 99, 102, 105, 108, 111, 114, 117, 120mzpindd 39336 . 2 (((𝑊 ∈ V ∧ 𝑉 ∈ V ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) ∧ 𝐹 ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
1221, 3, 4, 5, 121syl31anc 1369 1 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑦𝑉 𝐺 ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑦𝑉 ↦ (𝐺𝑥)))) ∈ (mzPoly‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3495  csb 3883  {csn 4561  cmpt 5139   × cxp 5548   Fn wfn 6345  wf 6346  cfv 6350  (class class class)co 7150  f cof 7401  m cmap 8400   + caddc 10534   · cmul 10536  cz 11975  mzPolycmzp 39312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-mzpcl 39313  df-mzp 39314
This theorem is referenced by:  mzprename  39339
  Copyright terms: Public domain W3C validator