Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0el Structured version   Visualization version   GIF version

Theorem n0el 3973
 Description: Negated membership of the empty set in another class. (Contributed by Rodolfo Medina, 25-Sep-2010.)
Assertion
Ref Expression
n0el (¬ ∅ ∈ 𝐴 ↔ ∀𝑥𝐴𝑢 𝑢𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑢
Allowed substitution hint:   𝐴(𝑢)

Proof of Theorem n0el
StepHypRef Expression
1 df-ral 2946 . 2 (∀𝑥𝐴 ¬ ∀𝑢 ¬ 𝑢𝑥 ↔ ∀𝑥(𝑥𝐴 → ¬ ∀𝑢 ¬ 𝑢𝑥))
2 df-ex 1745 . . 3 (∃𝑢 𝑢𝑥 ↔ ¬ ∀𝑢 ¬ 𝑢𝑥)
32ralbii 3009 . 2 (∀𝑥𝐴𝑢 𝑢𝑥 ↔ ∀𝑥𝐴 ¬ ∀𝑢 ¬ 𝑢𝑥)
4 alnex 1746 . . 3 (∀𝑥 ¬ (𝑥𝐴 ∧ ∀𝑢 ¬ 𝑢𝑥) ↔ ¬ ∃𝑥(𝑥𝐴 ∧ ∀𝑢 ¬ 𝑢𝑥))
5 imnang 1809 . . 3 (∀𝑥(𝑥𝐴 → ¬ ∀𝑢 ¬ 𝑢𝑥) ↔ ∀𝑥 ¬ (𝑥𝐴 ∧ ∀𝑢 ¬ 𝑢𝑥))
6 0el 3972 . . . . 5 (∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑢 ¬ 𝑢𝑥)
7 df-rex 2947 . . . . 5 (∃𝑥𝐴𝑢 ¬ 𝑢𝑥 ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑢 ¬ 𝑢𝑥))
86, 7bitri 264 . . . 4 (∅ ∈ 𝐴 ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑢 ¬ 𝑢𝑥))
98notbii 309 . . 3 (¬ ∅ ∈ 𝐴 ↔ ¬ ∃𝑥(𝑥𝐴 ∧ ∀𝑢 ¬ 𝑢𝑥))
104, 5, 93bitr4ri 293 . 2 (¬ ∅ ∈ 𝐴 ↔ ∀𝑥(𝑥𝐴 → ¬ ∀𝑢 ¬ 𝑢𝑥))
111, 3, 103bitr4ri 293 1 (¬ ∅ ∈ 𝐴 ↔ ∀𝑥𝐴𝑢 𝑢𝑥)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1521  ∃wex 1744   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  ∅c0 3948 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-v 3233  df-dif 3610  df-nul 3949 This theorem is referenced by:  n0el2  34244  prter2  34485
 Copyright terms: Public domain W3C validator