![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0el | Structured version Visualization version GIF version |
Description: Negated membership of the empty set in another class. (Contributed by Rodolfo Medina, 25-Sep-2010.) |
Ref | Expression |
---|---|
n0el | ⊢ (¬ ∅ ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑢 𝑢 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2946 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) | |
2 | df-ex 1745 | . . 3 ⊢ (∃𝑢 𝑢 ∈ 𝑥 ↔ ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥) | |
3 | 2 | ralbii 3009 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑢 𝑢 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥) |
4 | alnex 1746 | . . 3 ⊢ (∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥) ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) | |
5 | imnang 1809 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥) ↔ ∀𝑥 ¬ (𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) | |
6 | 0el 3972 | . . . . 5 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑢 ¬ 𝑢 ∈ 𝑥) | |
7 | df-rex 2947 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑢 ¬ 𝑢 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) | |
8 | 6, 7 | bitri 264 | . . . 4 ⊢ (∅ ∈ 𝐴 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) |
9 | 8 | notbii 309 | . . 3 ⊢ (¬ ∅ ∈ 𝐴 ↔ ¬ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) |
10 | 4, 5, 9 | 3bitr4ri 293 | . 2 ⊢ (¬ ∅ ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ ∀𝑢 ¬ 𝑢 ∈ 𝑥)) |
11 | 1, 3, 10 | 3bitr4ri 293 | 1 ⊢ (¬ ∅ ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∃𝑢 𝑢 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∀wal 1521 ∃wex 1744 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 df-dif 3610 df-nul 3949 |
This theorem is referenced by: n0el2 34244 prter2 34485 |
Copyright terms: Public domain | W3C validator |