Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  n0elqs Structured version   Visualization version   GIF version

Theorem n0elqs 34440
Description: Two ways of expressing that the empty set is not an element of a quotient set. (Contributed by Peter Mazsa, 5-Dec-2019.)
Assertion
Ref Expression
n0elqs (¬ ∅ ∈ (𝐴 / 𝑅) ↔ 𝐴 ⊆ dom 𝑅)

Proof of Theorem n0elqs
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ecdmn0 7958 . . 3 (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅)
21ralbii 3118 . 2 (∀𝑥𝐴 𝑥 ∈ dom 𝑅 ↔ ∀𝑥𝐴 [𝑥]𝑅 ≠ ∅)
3 dfss3 3733 . 2 (𝐴 ⊆ dom 𝑅 ↔ ∀𝑥𝐴 𝑥 ∈ dom 𝑅)
4 nne 2936 . . . . 5 (¬ [𝑥]𝑅 ≠ ∅ ↔ [𝑥]𝑅 = ∅)
54rexbii 3179 . . . 4 (∃𝑥𝐴 ¬ [𝑥]𝑅 ≠ ∅ ↔ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
65notbii 309 . . 3 (¬ ∃𝑥𝐴 ¬ [𝑥]𝑅 ≠ ∅ ↔ ¬ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
7 dfral2 3132 . . 3 (∀𝑥𝐴 [𝑥]𝑅 ≠ ∅ ↔ ¬ ∃𝑥𝐴 ¬ [𝑥]𝑅 ≠ ∅)
8 0ex 4942 . . . . . 6 ∅ ∈ V
98elqs 7968 . . . . 5 (∅ ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 ∅ = [𝑥]𝑅)
10 eqcom 2767 . . . . . 6 (∅ = [𝑥]𝑅 ↔ [𝑥]𝑅 = ∅)
1110rexbii 3179 . . . . 5 (∃𝑥𝐴 ∅ = [𝑥]𝑅 ↔ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
129, 11bitri 264 . . . 4 (∅ ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
1312notbii 309 . . 3 (¬ ∅ ∈ (𝐴 / 𝑅) ↔ ¬ ∃𝑥𝐴 [𝑥]𝑅 = ∅)
146, 7, 133bitr4ri 293 . 2 (¬ ∅ ∈ (𝐴 / 𝑅) ↔ ∀𝑥𝐴 [𝑥]𝑅 ≠ ∅)
152, 3, 143bitr4ri 293 1 (¬ ∅ ∈ (𝐴 / 𝑅) ↔ 𝐴 ⊆ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  wss 3715  c0 4058  dom cdm 5266  [cec 7911   / cqs 7912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-xp 5272  df-cnv 5274  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-ec 7915  df-qs 7919
This theorem is referenced by:  n0elqs2  34441
  Copyright terms: Public domain W3C validator