MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0f Structured version   Visualization version   GIF version

Theorem n0f 4304
Description: A class is nonempty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0 4307 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by NM, 17-Oct-2003.)
Hypothesis
Ref Expression
eq0f.1 𝑥𝐴
Assertion
Ref Expression
n0f (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)

Proof of Theorem n0f
StepHypRef Expression
1 df-ne 3014 . 2 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 eq0f.1 . . 3 𝑥𝐴
32neq0f 4303 . 2 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
41, 3bitri 276 1 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207   = wceq 1528  wex 1771  wcel 2105  wnfc 2958  wne 3013  c0 4288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-dif 3936  df-nul 4289
This theorem is referenced by:  n0  4307  abn0  4333  cp  9308  ordtconnlem1  31066  inn0f  41212
  Copyright terms: Public domain W3C validator