MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n4cyclfrgr Structured version   Visualization version   GIF version

Theorem n4cyclfrgr 28072
Description: There is no 4-cycle in a friendship graph, see Proposition 1(a) of [MertziosUnger] p. 153 : "A friendship graph G contains no C4 as a subgraph ...". (Contributed by Alexander van der Vekens, 19-Nov-2017.) (Revised by AV, 2-Apr-2021.)
Assertion
Ref Expression
n4cyclfrgr ((𝐺 ∈ FriendGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 4)

Proof of Theorem n4cyclfrgr
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑘 𝑙 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrusgr 28042 . . . . 5 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2 usgrupgr 26969 . . . . 5 (𝐺 ∈ USGraph → 𝐺 ∈ UPGraph)
31, 2syl 17 . . . 4 (𝐺 ∈ FriendGraph → 𝐺 ∈ UPGraph)
4 eqid 2823 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
5 eqid 2823 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
64, 5upgr4cycl4dv4e 27966 . . . . . . . 8 ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))))
74, 5isfrgr 28041 . . . . . . . . . . . 12 (𝐺 ∈ FriendGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
8 simplrl 775 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑐 ∈ (Vtx‘𝐺))
9 necom 3071 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝑐𝑐𝑎)
109biimpi 218 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝑐𝑐𝑎)
11103ad2ant2 1130 . . . . . . . . . . . . . . . . . . 19 ((𝑎𝑏𝑎𝑐𝑎𝑑) → 𝑐𝑎)
1211ad2antrl 726 . . . . . . . . . . . . . . . . . 18 (((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → 𝑐𝑎)
1312adantl 484 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑐𝑎)
14 eldifsn 4721 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}) ↔ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑐𝑎))
158, 13, 14sylanbrc 585 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}))
16 sneq 4579 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑎 → {𝑘} = {𝑎})
1716difeq2d 4101 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑎 → ((Vtx‘𝐺) ∖ {𝑘}) = ((Vtx‘𝐺) ∖ {𝑎}))
18 preq2 4672 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘 = 𝑎 → {𝑥, 𝑘} = {𝑥, 𝑎})
1918preq1d 4677 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑎 → {{𝑥, 𝑘}, {𝑥, 𝑙}} = {{𝑥, 𝑎}, {𝑥, 𝑙}})
2019sseq1d 4000 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑎 → ({{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2120reubidv 3391 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑎 → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2217, 21raleqbidv 3403 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑎 → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2322rspcv 3620 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Vtx‘𝐺) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
2423ad3antrrr 728 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)))
25 preq2 4672 . . . . . . . . . . . . . . . . . . . 20 (𝑙 = 𝑐 → {𝑥, 𝑙} = {𝑥, 𝑐})
2625preq2d 4678 . . . . . . . . . . . . . . . . . . 19 (𝑙 = 𝑐 → {{𝑥, 𝑎}, {𝑥, 𝑙}} = {{𝑥, 𝑎}, {𝑥, 𝑐}})
2726sseq1d 4000 . . . . . . . . . . . . . . . . . 18 (𝑙 = 𝑐 → ({{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ {{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
2827reubidv 3391 . . . . . . . . . . . . . . . . 17 (𝑙 = 𝑐 → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
2928rspcv 3620 . . . . . . . . . . . . . . . 16 (𝑐 ∈ ((Vtx‘𝐺) ∖ {𝑎}) → (∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑎})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
3015, 24, 29sylsyld 61 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺)))
31 prcom 4670 . . . . . . . . . . . . . . . . . . 19 {𝑥, 𝑎} = {𝑎, 𝑥}
3231preq1i 4674 . . . . . . . . . . . . . . . . . 18 {{𝑥, 𝑎}, {𝑥, 𝑐}} = {{𝑎, 𝑥}, {𝑥, 𝑐}}
3332sseq1i 3997 . . . . . . . . . . . . . . . . 17 ({{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) ↔ {{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
3433reubii 3393 . . . . . . . . . . . . . . . 16 (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) ↔ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
35 simprll 777 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → ({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)))
36 simprlr 778 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺)))
37 simpllr 774 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑏 ∈ (Vtx‘𝐺))
38 simplrr 776 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑑 ∈ (Vtx‘𝐺))
39 simprr2 1218 . . . . . . . . . . . . . . . . . . . 20 (((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → 𝑏𝑑)
4039adantl 484 . . . . . . . . . . . . . . . . . . 19 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → 𝑏𝑑)
41 4cycl2vnunb 28071 . . . . . . . . . . . . . . . . . . 19 ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺)) ∧ (𝑏 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺) ∧ 𝑏𝑑)) → ¬ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
4235, 36, 37, 38, 40, 41syl113anc 1378 . . . . . . . . . . . . . . . . . 18 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → ¬ ∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺))
4342pm2.21d 121 . . . . . . . . . . . . . . . . 17 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → (♯‘𝐹) ≠ 4))
4443com12 32 . . . . . . . . . . . . . . . 16 (∃!𝑥 ∈ (Vtx‘𝐺){{𝑎, 𝑥}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
4534, 44sylbi 219 . . . . . . . . . . . . . . 15 (∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑎}, {𝑥, 𝑐}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
4630, 45syl6 35 . . . . . . . . . . . . . 14 ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4)))
4746pm2.43b 55 . . . . . . . . . . . . 13 (∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
4847adantl 484 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ ∀𝑘 ∈ (Vtx‘𝐺)∀𝑙 ∈ ((Vtx‘𝐺) ∖ {𝑘})∃!𝑥 ∈ (Vtx‘𝐺){{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ (Edg‘𝐺)) → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
497, 48sylbi 219 . . . . . . . . . . 11 (𝐺 ∈ FriendGraph → ((((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) ∧ ((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑)))) → (♯‘𝐹) ≠ 4))
5049expdcom 417 . . . . . . . . . 10 (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑐 ∈ (Vtx‘𝐺) ∧ 𝑑 ∈ (Vtx‘𝐺))) → (((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4)))
5150rexlimdvva 3296 . . . . . . . . 9 ((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) → (∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4)))
5251rexlimivv 3294 . . . . . . . 8 (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)∃𝑐 ∈ (Vtx‘𝐺)∃𝑑 ∈ (Vtx‘𝐺)((({𝑎, 𝑏} ∈ (Edg‘𝐺) ∧ {𝑏, 𝑐} ∈ (Edg‘𝐺)) ∧ ({𝑐, 𝑑} ∈ (Edg‘𝐺) ∧ {𝑑, 𝑎} ∈ (Edg‘𝐺))) ∧ ((𝑎𝑏𝑎𝑐𝑎𝑑) ∧ (𝑏𝑐𝑏𝑑𝑐𝑑))) → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4))
536, 52syl 17 . . . . . . 7 ((𝐺 ∈ UPGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ (♯‘𝐹) = 4) → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4))
54533exp 1115 . . . . . 6 (𝐺 ∈ UPGraph → (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 4 → (𝐺 ∈ FriendGraph → (♯‘𝐹) ≠ 4))))
5554com34 91 . . . . 5 (𝐺 ∈ UPGraph → (𝐹(Cycles‘𝐺)𝑃 → (𝐺 ∈ FriendGraph → ((♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4))))
5655com23 86 . . . 4 (𝐺 ∈ UPGraph → (𝐺 ∈ FriendGraph → (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4))))
573, 56mpcom 38 . . 3 (𝐺 ∈ FriendGraph → (𝐹(Cycles‘𝐺)𝑃 → ((♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4)))
5857imp 409 . 2 ((𝐺 ∈ FriendGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → ((♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4))
59 neqne 3026 . 2 (¬ (♯‘𝐹) = 4 → (♯‘𝐹) ≠ 4)
6058, 59pm2.61d1 182 1 ((𝐺 ∈ FriendGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → (♯‘𝐹) ≠ 4)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  ∃!wreu 3142  cdif 3935  wss 3938  {csn 4569  {cpr 4571   class class class wbr 5068  cfv 6357  4c4 11697  chash 13693  Vtxcvtx 26783  Edgcedg 26834  UPGraphcupgr 26867  USGraphcusgr 26936  Cyclesccycls 27568   FriendGraph cfrgr 28039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-edg 26835  df-uhgr 26845  df-upgr 26869  df-uspgr 26937  df-usgr 26938  df-wlks 27383  df-trls 27476  df-pths 27499  df-cycls 27570  df-frgr 28040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator