Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nalf Structured version   Visualization version   GIF version

Theorem nalf 32071
Description: Not all sets hold as true. (Contributed by Anthony Hart, 13-Sep-2011.)
Assertion
Ref Expression
nalf ¬ ∀𝑥

Proof of Theorem nalf
StepHypRef Expression
1 alnof 32070 . 2 𝑥 ¬ ⊥
2 falim 1495 . . 3 (⊥ → ¬ ∀𝑥 ¬ ⊥)
32sps 2053 . 2 (∀𝑥⊥ → ¬ ∀𝑥 ¬ ⊥)
41, 3mt2 191 1 ¬ ∀𝑥
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1478  wfal 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-12 2044
This theorem depends on definitions:  df-bi 197  df-tru 1483  df-fal 1486  df-ex 1702
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator