Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nanorxor Structured version   Visualization version   GIF version

Theorem nanorxor 38821
Description: 'nand' is equivalent to the equivalence of inclusive and exclusive or. (Contributed by Steve Rodriguez, 28-Feb-2020.)
Assertion
Ref Expression
nanorxor ((𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))

Proof of Theorem nanorxor
StepHypRef Expression
1 df-nan 1488 . 2 ((𝜑𝜓) ↔ ¬ (𝜑𝜓))
2 xor2 1510 . . . 4 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓)))
32rbaibr 966 . . 3 (¬ (𝜑𝜓) → ((𝜑𝜓) ↔ (𝜑𝜓)))
42bibi2i 326 . . . 4 (((𝜑𝜓) ↔ (𝜑𝜓)) ↔ ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓))))
5 pm4.71 663 . . . . 5 (((𝜑𝜓) → ¬ (𝜑𝜓)) ↔ ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓))))
6 simpl 472 . . . . . . . 8 ((𝜑𝜓) → 𝜑)
76orcd 406 . . . . . . 7 ((𝜑𝜓) → (𝜑𝜓))
87con3i 150 . . . . . 6 (¬ (𝜑𝜓) → ¬ (𝜑𝜓))
9 id 22 . . . . . 6 (¬ (𝜑𝜓) → ¬ (𝜑𝜓))
108, 9ja 173 . . . . 5 (((𝜑𝜓) → ¬ (𝜑𝜓)) → ¬ (𝜑𝜓))
115, 10sylbir 225 . . . 4 (((𝜑𝜓) ↔ ((𝜑𝜓) ∧ ¬ (𝜑𝜓))) → ¬ (𝜑𝜓))
124, 11sylbi 207 . . 3 (((𝜑𝜓) ↔ (𝜑𝜓)) → ¬ (𝜑𝜓))
133, 12impbii 199 . 2 (¬ (𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))
141, 13bitri 264 1 ((𝜑𝜓) ↔ ((𝜑𝜓) ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  wnan 1487  wxo 1504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-nan 1488  df-xor 1505
This theorem is referenced by:  undisjrab  38822
  Copyright terms: Public domain W3C validator