Step | Hyp | Ref
| Expression |
1 | | fucpropd.1 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
2 | | fucpropd.2 |
. . . 4
⊢ (𝜑 →
(compf‘𝐴) = (compf‘𝐵)) |
3 | | fucpropd.3 |
. . . 4
⊢ (𝜑 → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
4 | | fucpropd.4 |
. . . 4
⊢ (𝜑 →
(compf‘𝐶) = (compf‘𝐷)) |
5 | | fucpropd.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ Cat) |
6 | | fucpropd.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ Cat) |
7 | | fucpropd.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ Cat) |
8 | | fucpropd.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ Cat) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | funcpropd 16607 |
. . 3
⊢ (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
10 | 9 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (𝐴 Func 𝐶) = (𝐵 Func 𝐷)) |
11 | | nfv 1883 |
. . . 4
⊢
Ⅎ𝑟(𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) |
12 | | nfcsb1v 3582 |
. . . . 5
⊢
Ⅎ𝑟⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} |
13 | 12 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → Ⅎ𝑟⦋(1st ‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
14 | | fvexd 6241 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → (1st ‘𝑓) ∈ V) |
15 | | nfv 1883 |
. . . . . 6
⊢
Ⅎ𝑠((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) |
16 | | nfcsb1v 3582 |
. . . . . . 7
⊢
Ⅎ𝑠⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} |
17 | 16 | a1i 11 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → Ⅎ𝑠⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
18 | | fvexd 6241 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → (1st ‘𝑔) ∈ V) |
19 | | eqid 2651 |
. . . . . . . . . . 11
⊢
(Base‘𝐶) =
(Base‘𝐶) |
20 | | eqid 2651 |
. . . . . . . . . . 11
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
21 | | eqid 2651 |
. . . . . . . . . . 11
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
22 | 3 | ad4antr 769 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
23 | | eqid 2651 |
. . . . . . . . . . . . 13
⊢
(Base‘𝐴) =
(Base‘𝐴) |
24 | | simplr 807 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑟 = (1st ‘𝑓)) |
25 | | relfunc 16569 |
. . . . . . . . . . . . . . 15
⊢ Rel
(𝐴 Func 𝐶) |
26 | | simpllr 815 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) |
27 | 26 | simpld 474 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑓 ∈ (𝐴 Func 𝐶)) |
28 | | 1st2ndbr 7261 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
(𝐴 Func 𝐶) ∧ 𝑓 ∈ (𝐴 Func 𝐶)) → (1st ‘𝑓)(𝐴 Func 𝐶)(2nd ‘𝑓)) |
29 | 25, 27, 28 | sylancr 696 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (1st ‘𝑓)(𝐴 Func 𝐶)(2nd ‘𝑓)) |
30 | 24, 29 | eqbrtrd 4707 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑟(𝐴 Func 𝐶)(2nd ‘𝑓)) |
31 | 23, 19, 30 | funcf1 16573 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶)) |
32 | 31 | ffvelrnda 6399 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑟‘𝑥) ∈ (Base‘𝐶)) |
33 | | simpr 476 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑠 = (1st ‘𝑔)) |
34 | 26 | simprd 478 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑔 ∈ (𝐴 Func 𝐶)) |
35 | | 1st2ndbr 7261 |
. . . . . . . . . . . . . . 15
⊢ ((Rel
(𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶)) → (1st ‘𝑔)(𝐴 Func 𝐶)(2nd ‘𝑔)) |
36 | 25, 34, 35 | sylancr 696 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (1st ‘𝑔)(𝐴 Func 𝐶)(2nd ‘𝑔)) |
37 | 33, 36 | eqbrtrd 4707 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑠(𝐴 Func 𝐶)(2nd ‘𝑔)) |
38 | 23, 19, 37 | funcf1 16573 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶)) |
39 | 38 | ffvelrnda 6399 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑠‘𝑥) ∈ (Base‘𝐶)) |
40 | 19, 20, 21, 22, 32, 39 | homfeqval 16404 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑥 ∈ (Base‘𝐴)) → ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = ((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
41 | 40 | ixpeq2dva 7965 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
42 | 1 | homfeqbas 16403 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
43 | 42 | ad3antrrr 766 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → (Base‘𝐴) = (Base‘𝐵)) |
44 | 43 | ixpeq1d 7962 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
45 | 41, 44 | eqtrd 2685 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥))) |
46 | | fveq2 6229 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑟‘𝑥) = (𝑟‘𝑧)) |
47 | | fveq2 6229 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → (𝑠‘𝑥) = (𝑠‘𝑧)) |
48 | 46, 47 | oveq12d 6708 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = ((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) |
49 | 48 | cbvixpv 7968 |
. . . . . . . . . 10
⊢ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) = X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) |
50 | 49 | eleq2i 2722 |
. . . . . . . . 9
⊢ (𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ↔ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) |
51 | 43 | adantr 480 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) → (Base‘𝐴) = (Base‘𝐵)) |
52 | 51 | adantr 480 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵)) |
53 | | eqid 2651 |
. . . . . . . . . . . . 13
⊢ (Hom
‘𝐴) = (Hom
‘𝐴) |
54 | | eqid 2651 |
. . . . . . . . . . . . 13
⊢ (Hom
‘𝐵) = (Hom
‘𝐵) |
55 | 1 | ad6antr 777 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf
‘𝐴) =
(Homf ‘𝐵)) |
56 | | simplr 807 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴)) |
57 | | simpr 476 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑦 ∈ (Base‘𝐴)) |
58 | 23, 53, 54, 55, 56, 57 | homfeqval 16404 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦)) |
59 | | eqid 2651 |
. . . . . . . . . . . . . 14
⊢
(comp‘𝐶) =
(comp‘𝐶) |
60 | | eqid 2651 |
. . . . . . . . . . . . . 14
⊢
(comp‘𝐷) =
(comp‘𝐷) |
61 | 3 | ad7antr 781 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Homf
‘𝐶) =
(Homf ‘𝐷)) |
62 | 4 | ad7antr 781 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) →
(compf‘𝐶) = (compf‘𝐷)) |
63 | 32 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑟‘𝑥) ∈ (Base‘𝐶)) |
64 | 63 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟‘𝑥) ∈ (Base‘𝐶)) |
65 | 31 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑟:(Base‘𝐴)⟶(Base‘𝐶)) |
66 | 65 | ffvelrnda 6399 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑟‘𝑦) ∈ (Base‘𝐶)) |
67 | 66 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑟‘𝑦) ∈ (Base‘𝐶)) |
68 | 38 | ad2antrr 762 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑠:(Base‘𝐴)⟶(Base‘𝐶)) |
69 | 68 | ffvelrnda 6399 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑠‘𝑦) ∈ (Base‘𝐶)) |
70 | 69 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠‘𝑦) ∈ (Base‘𝐶)) |
71 | 30 | ad3antrrr 766 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑟(𝐴 Func 𝐶)(2nd ‘𝑓)) |
72 | 23, 53, 20, 71, 56, 57 | funcf2 16575 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd ‘𝑓)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑟‘𝑥)(Hom ‘𝐶)(𝑟‘𝑦))) |
73 | 72 | ffvelrnda 6399 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd ‘𝑓)𝑦)‘ℎ) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑟‘𝑦))) |
74 | | simplr 807 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) |
75 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → (𝑟‘𝑧) = (𝑟‘𝑦)) |
76 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → (𝑠‘𝑧) = (𝑠‘𝑦)) |
77 | 75, 76 | oveq12d 6708 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → ((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) = ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
78 | 77 | fvixp 7955 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ X𝑧 ∈
(Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑎‘𝑦) ∈ ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
79 | 74, 78 | sylan 487 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑎‘𝑦) ∈ ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
80 | 79 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎‘𝑦) ∈ ((𝑟‘𝑦)(Hom ‘𝐶)(𝑠‘𝑦))) |
81 | 19, 20, 59, 60, 61, 62, 64, 67, 70, 73, 80 | comfeqval 16415 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ))) |
82 | 39 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑠‘𝑥) ∈ (Base‘𝐶)) |
83 | 82 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑠‘𝑥) ∈ (Base‘𝐶)) |
84 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑥 → (𝑟‘𝑧) = (𝑟‘𝑥)) |
85 | | fveq2 6229 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑥 → (𝑠‘𝑧) = (𝑠‘𝑥)) |
86 | 84, 85 | oveq12d 6708 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑥 → ((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) = ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
87 | 86 | fvixp 7955 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑎 ∈ X𝑧 ∈
(Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧)) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎‘𝑥) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
88 | 87 | adantll 750 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (𝑎‘𝑥) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
89 | 88 | ad2antrr 762 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑎‘𝑥) ∈ ((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) |
90 | 37 | ad3antrrr 766 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑠(𝐴 Func 𝐶)(2nd ‘𝑔)) |
91 | 23, 53, 20, 90, 56, 57 | funcf2 16575 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑥(2nd ‘𝑔)𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝑠‘𝑥)(Hom ‘𝐶)(𝑠‘𝑦))) |
92 | 91 | ffvelrnda 6399 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → ((𝑥(2nd ‘𝑔)𝑦)‘ℎ) ∈ ((𝑠‘𝑥)(Hom ‘𝐶)(𝑠‘𝑦))) |
93 | 19, 20, 59, 60, 61, 62, 64, 83, 70, 89, 92 | comfeqval 16415 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))) |
94 | 81, 93 | eqeq12d 2666 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) ∧ ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)) → (((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
95 | 58, 94 | raleqbidva 3184 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
96 | 52, 95 | raleqbidva 3184 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
97 | 51, 96 | raleqbidva 3184 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑧 ∈ (Base‘𝐴)((𝑟‘𝑧)(Hom ‘𝐶)(𝑠‘𝑧))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
98 | 50, 97 | sylan2b 491 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) ∧ 𝑎 ∈ X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥))) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥)))) |
99 | 45, 98 | rabeqbidva 3227 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = {𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
100 | | csbeq1a 3575 |
. . . . . . . 8
⊢ (𝑠 = (1st ‘𝑔) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
101 | 100 | adantl 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
102 | 99, 101 | eqtrd 2685 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) ∧ 𝑠 = (1st ‘𝑔)) → {𝑎 ∈ X𝑥 ∈ (Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
103 | 15, 17, 18, 102 | csbiedf 3587 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
104 | | csbeq1a 3575 |
. . . . . 6
⊢ (𝑟 = (1st ‘𝑓) →
⦋(1st ‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈ (Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
105 | 104 | adantl 481 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
106 | 103, 105 | eqtrd 2685 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) ∧ 𝑟 = (1st ‘𝑓)) → ⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
107 | 11, 13, 14, 106 | csbiedf 3587 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐴 Func 𝐶) ∧ 𝑔 ∈ (𝐴 Func 𝐶))) → ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))} = ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
108 | 9, 10, 107 | mpt2eq123dva 6758 |
. 2
⊢ (𝜑 → (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))}) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))})) |
109 | | eqid 2651 |
. . 3
⊢ (𝐴 Nat 𝐶) = (𝐴 Nat 𝐶) |
110 | 109, 23, 53, 20, 59 | natfval 16653 |
. 2
⊢ (𝐴 Nat 𝐶) = (𝑓 ∈ (𝐴 Func 𝐶), 𝑔 ∈ (𝐴 Func 𝐶) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐴)((𝑟‘𝑥)(Hom ‘𝐶)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)∀ℎ ∈ (𝑥(Hom ‘𝐴)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐶)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐶)(𝑠‘𝑦))(𝑎‘𝑥))}) |
111 | | eqid 2651 |
. . 3
⊢ (𝐵 Nat 𝐷) = (𝐵 Nat 𝐷) |
112 | | eqid 2651 |
. . 3
⊢
(Base‘𝐵) =
(Base‘𝐵) |
113 | 111, 112,
54, 21, 60 | natfval 16653 |
. 2
⊢ (𝐵 Nat 𝐷) = (𝑓 ∈ (𝐵 Func 𝐷), 𝑔 ∈ (𝐵 Func 𝐷) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝐵)((𝑟‘𝑥)(Hom ‘𝐷)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)∀ℎ ∈ (𝑥(Hom ‘𝐵)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝐷)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝐷)(𝑠‘𝑦))(𝑎‘𝑥))}) |
114 | 108, 110,
113 | 3eqtr4g 2710 |
1
⊢ (𝜑 → (𝐴 Nat 𝐶) = (𝐵 Nat 𝐷)) |