MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3gr2nb Structured version   Visualization version   GIF version

Theorem nb3gr2nb 26167
Description: If the neighbors of two vertices in a graph with three elements are an unordered pair of the other vertices, the neighbors of all three vertices are an unordered pair of the other vertices. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.)
Assertion
Ref Expression
nb3gr2nb (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))

Proof of Theorem nb3gr2nb
StepHypRef Expression
1 prcom 4242 . . . . . . . . 9 {𝐴, 𝐶} = {𝐶, 𝐴}
21eleq1i 2695 . . . . . . . 8 ({𝐴, 𝐶} ∈ (Edg‘𝐺) ↔ {𝐶, 𝐴} ∈ (Edg‘𝐺))
32biimpi 206 . . . . . . 7 ({𝐴, 𝐶} ∈ (Edg‘𝐺) → {𝐶, 𝐴} ∈ (Edg‘𝐺))
43adantl 482 . . . . . 6 (({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) → {𝐶, 𝐴} ∈ (Edg‘𝐺))
5 prcom 4242 . . . . . . . . 9 {𝐵, 𝐶} = {𝐶, 𝐵}
65eleq1i 2695 . . . . . . . 8 ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ {𝐶, 𝐵} ∈ (Edg‘𝐺))
76biimpi 206 . . . . . . 7 ({𝐵, 𝐶} ∈ (Edg‘𝐺) → {𝐶, 𝐵} ∈ (Edg‘𝐺))
87adantl 482 . . . . . 6 (({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)) → {𝐶, 𝐵} ∈ (Edg‘𝐺))
94, 8anim12i 589 . . . . 5 ((({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) ∧ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))) → ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺)))
109a1i 11 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ((({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) ∧ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))) → ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺))))
11 eqid 2626 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
12 eqid 2626 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
13 simprr 795 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → 𝐺 ∈ USGraph )
14 simprl 793 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶})
15 simpl 473 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → (𝐴𝑋𝐵𝑌𝐶𝑍))
1611, 12, 13, 14, 15nb3grprlem1 26163 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺))))
17 3ancoma 1043 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐶𝑍) ↔ (𝐵𝑌𝐴𝑋𝐶𝑍))
1817biimpi 206 . . . . . 6 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (𝐵𝑌𝐴𝑋𝐶𝑍))
19 tpcoma 4260 . . . . . . . . 9 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
2019eqeq2i 2638 . . . . . . . 8 ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ↔ (Vtx‘𝐺) = {𝐵, 𝐴, 𝐶})
2120biimpi 206 . . . . . . 7 ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} → (Vtx‘𝐺) = {𝐵, 𝐴, 𝐶})
2221anim1i 591 . . . . . 6 (((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph ) → ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph ))
23 simprr 795 . . . . . . 7 (((𝐵𝑌𝐴𝑋𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph )) → 𝐺 ∈ USGraph )
24 simprl 793 . . . . . . 7 (((𝐵𝑌𝐴𝑋𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph )) → (Vtx‘𝐺) = {𝐵, 𝐴, 𝐶})
25 simpl 473 . . . . . . 7 (((𝐵𝑌𝐴𝑋𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph )) → (𝐵𝑌𝐴𝑋𝐶𝑍))
2611, 12, 23, 24, 25nb3grprlem1 26163 . . . . . 6 (((𝐵𝑌𝐴𝑋𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph )) → ((𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ↔ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))))
2718, 22, 26syl2an 494 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ((𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ↔ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))))
2816, 27anbi12d 746 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ (({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) ∧ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)))))
29 3anrot 1041 . . . . . 6 ((𝐶𝑍𝐴𝑋𝐵𝑌) ↔ (𝐴𝑋𝐵𝑌𝐶𝑍))
3029biimpri 218 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (𝐶𝑍𝐴𝑋𝐵𝑌))
31 tprot 4259 . . . . . . . . 9 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
3231eqcomi 2635 . . . . . . . 8 {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵}
3332eqeq2i 2638 . . . . . . 7 ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ↔ (Vtx‘𝐺) = {𝐶, 𝐴, 𝐵})
3433anbi1i 730 . . . . . 6 (((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph ) ↔ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph ))
3534biimpi 206 . . . . 5 (((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph ) → ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph ))
36 simprr 795 . . . . . 6 (((𝐶𝑍𝐴𝑋𝐵𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph )) → 𝐺 ∈ USGraph )
37 simprl 793 . . . . . 6 (((𝐶𝑍𝐴𝑋𝐵𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph )) → (Vtx‘𝐺) = {𝐶, 𝐴, 𝐵})
38 simpl 473 . . . . . 6 (((𝐶𝑍𝐴𝑋𝐵𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph )) → (𝐶𝑍𝐴𝑋𝐵𝑌))
3911, 12, 36, 37, 38nb3grprlem1 26163 . . . . 5 (((𝐶𝑍𝐴𝑋𝐵𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph )) → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺))))
4030, 35, 39syl2an 494 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺))))
4110, 28, 403imtr4d 283 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) → (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))
4241pm4.71d 665 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))
43 df-3an 1038 . 2 (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))
4442, 43syl6bbr 278 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph )) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  {cpr 4155  {ctp 4157  cfv 5850  (class class class)co 6605  Vtxcvtx 25769  Edgcedg 25834   USGraph cusgr 25932   NeighbVtx cnbgr 26105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-hash 13055  df-edg 25835  df-upgr 25868  df-umgr 25869  df-usgr 25934  df-nbgr 26109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator