Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3grpr2 Structured version   Visualization version   GIF version

Theorem nb3grpr2 26172
 Description: The neighbors of a vertex in a simple graph with three elements are an unordered pair of the other vertices iff all vertices are connected with each other. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nb3grpr.v 𝑉 = (Vtx‘𝐺)
nb3grpr.e 𝐸 = (Edg‘𝐺)
nb3grpr.g (𝜑𝐺 ∈ USGraph )
nb3grpr.t (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
nb3grpr.s (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
nb3grpr.n (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))
Assertion
Ref Expression
nb3grpr2 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))

Proof of Theorem nb3grpr2
StepHypRef Expression
1 3anan32 1048 . . . . 5 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸))
21a1i 11 . . . 4 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸)))
3 prcom 4237 . . . . . . . . . . 11 {𝐶, 𝐴} = {𝐴, 𝐶}
43eleq1i 2689 . . . . . . . . . 10 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸)
54biimpi 206 . . . . . . . . 9 ({𝐶, 𝐴} ∈ 𝐸 → {𝐴, 𝐶} ∈ 𝐸)
65pm4.71i 663 . . . . . . . 8 ({𝐶, 𝐴} ∈ 𝐸 ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸))
76anbi2i 729 . . . . . . 7 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))
8 anass 680 . . . . . . 7 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))
97, 8bitr4i 267 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸))
109anbi1i 730 . . . . 5 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸))
11 anass 680 . . . . 5 (((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
1210, 11bitri 264 . . . 4 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
132, 12syl6bb 276 . . 3 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))))
14 prcom 4237 . . . . . . . . . 10 {𝐴, 𝐵} = {𝐵, 𝐴}
1514eleq1i 2689 . . . . . . . . 9 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐵, 𝐴} ∈ 𝐸)
1615biimpi 206 . . . . . . . 8 ({𝐴, 𝐵} ∈ 𝐸 → {𝐵, 𝐴} ∈ 𝐸)
1716pm4.71i 663 . . . . . . 7 ({𝐴, 𝐵} ∈ 𝐸 ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸))
1817anbi1i 730 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐴} ∈ 𝐸))
19 df-3an 1038 . . . . . 6 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸) ∧ {𝐶, 𝐴} ∈ 𝐸))
2018, 19bitr4i 267 . . . . 5 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))
21 prcom 4237 . . . . . . . . . 10 {𝐵, 𝐶} = {𝐶, 𝐵}
2221eleq1i 2689 . . . . . . . . 9 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐶, 𝐵} ∈ 𝐸)
2322biimpi 206 . . . . . . . 8 ({𝐵, 𝐶} ∈ 𝐸 → {𝐶, 𝐵} ∈ 𝐸)
2423pm4.71i 663 . . . . . . 7 ({𝐵, 𝐶} ∈ 𝐸 ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
2524anbi2i 729 . . . . . 6 (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
26 3anass 1040 . . . . . 6 (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
2725, 26bitr4i 267 . . . . 5 (({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))
2820, 27anbi12i 732 . . . 4 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
29 an6 1405 . . . 4 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3028, 29bitri 264 . . 3 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ∧ ({𝐴, 𝐶} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
3113, 30syl6bb 276 . 2 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
32 nb3grpr.v . . . 4 𝑉 = (Vtx‘𝐺)
33 nb3grpr.e . . . 4 𝐸 = (Edg‘𝐺)
34 nb3grpr.g . . . 4 (𝜑𝐺 ∈ USGraph )
35 nb3grpr.t . . . 4 (𝜑𝑉 = {𝐴, 𝐵, 𝐶})
36 nb3grpr.s . . . 4 (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
3732, 33, 34, 35, 36nb3grprlem1 26169 . . 3 (𝜑 → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸)))
38 tpcoma 4255 . . . . 5 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
3935, 38syl6eq 2671 . . . 4 (𝜑𝑉 = {𝐵, 𝐴, 𝐶})
40 3ancoma 1043 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) ↔ (𝐵𝑌𝐴𝑋𝐶𝑍))
4136, 40sylib 208 . . . 4 (𝜑 → (𝐵𝑌𝐴𝑋𝐶𝑍))
4232, 33, 34, 39, 41nb3grprlem1 26169 . . 3 (𝜑 → ((𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ↔ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)))
43 tprot 4254 . . . . 5 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
4435, 43syl6eqr 2673 . . . 4 (𝜑𝑉 = {𝐶, 𝐴, 𝐵})
45 3anrot 1041 . . . . 5 ((𝐶𝑍𝐴𝑋𝐵𝑌) ↔ (𝐴𝑋𝐵𝑌𝐶𝑍))
4636, 45sylibr 224 . . . 4 (𝜑 → (𝐶𝑍𝐴𝑋𝐵𝑌))
4732, 33, 34, 44, 46nb3grprlem1 26169 . . 3 (𝜑 → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸)))
4837, 42, 473anbi123d 1396 . 2 (𝜑 → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐴, 𝐶} ∈ 𝐸) ∧ ({𝐵, 𝐴} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐴} ∈ 𝐸 ∧ {𝐶, 𝐵} ∈ 𝐸))))
4931, 48bitr4d 271 1 (𝜑 → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  {cpr 4150  {ctp 4152  ‘cfv 5847  (class class class)co 6604  Vtxcvtx 25774  Edgcedg 25839   USGraph cusgr 25937   NeighbVtx cnbgr 26111 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-n0 11237  df-xnn0 11308  df-z 11322  df-uz 11632  df-fz 12269  df-hash 13058  df-edg 25840  df-upgr 25873  df-umgr 25874  df-usgr 25939  df-nbgr 26115 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator