MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbcplgr Structured version   Visualization version   GIF version

Theorem nbcplgr 27208
Description: In a complete graph, each vertex has all other vertices as neighbors. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 3-Nov-2020.)
Hypothesis
Ref Expression
nbcplgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
nbcplgr ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))

Proof of Theorem nbcplgr
StepHypRef Expression
1 nbcplgr.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
21cplgruvtxb 27187 . . . . . 6 (𝐺 ∈ ComplGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))
32ibi 269 . . . . 5 (𝐺 ∈ ComplGraph → (UnivVtx‘𝐺) = 𝑉)
43eqcomd 2825 . . . 4 (𝐺 ∈ ComplGraph → 𝑉 = (UnivVtx‘𝐺))
54eleq2d 2896 . . 3 (𝐺 ∈ ComplGraph → (𝑁𝑉𝑁 ∈ (UnivVtx‘𝐺)))
65biimpa 479 . 2 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → 𝑁 ∈ (UnivVtx‘𝐺))
71uvtxnbgrb 27175 . . 3 (𝑁𝑉 → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
87adantl 484 . 2 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝑁 ∈ (UnivVtx‘𝐺) ↔ (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})))
96, 8mpbid 234 1 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  cdif 3931  {csn 4559  cfv 6348  (class class class)co 7148  Vtxcvtx 26773   NeighbVtx cnbgr 27106  UnivVtxcuvtx 27159  ComplGraphccplgr 27183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-nbgr 27107  df-uvtx 27160  df-cplgr 27185
This theorem is referenced by:  cusgrsizeindslem  27225  cusgrrusgr  27355
  Copyright terms: Public domain W3C validator