![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbfusgrlevtxm1 | Structured version Visualization version GIF version |
Description: The number of neighbors of a vertex is at most the number of vertices of the graph minus 1 in a finite simple graph. (Contributed by AV, 16-Dec-2020.) (Proof shortened by AV, 13-Feb-2022.) |
Ref | Expression |
---|---|
hashnbusgrnn0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbfusgrlevtxm1 | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashnbusgrnn0.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | fvexi 6359 | . . . 4 ⊢ 𝑉 ∈ V |
3 | 2 | difexi 4957 | . . 3 ⊢ (𝑉 ∖ {𝑈}) ∈ V |
4 | 1 | nbgrssovtx 26452 | . . . 4 ⊢ (𝐺 NeighbVtx 𝑈) ⊆ (𝑉 ∖ {𝑈}) |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (𝐺 NeighbVtx 𝑈) ⊆ (𝑉 ∖ {𝑈})) |
6 | hashss 13385 | . . 3 ⊢ (((𝑉 ∖ {𝑈}) ∈ V ∧ (𝐺 NeighbVtx 𝑈) ⊆ (𝑉 ∖ {𝑈})) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ (♯‘(𝑉 ∖ {𝑈}))) | |
7 | 3, 5, 6 | sylancr 698 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ (♯‘(𝑉 ∖ {𝑈}))) |
8 | 1 | fusgrvtxfi 26406 | . . 3 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
9 | hashdifsn 13390 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑈 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑈})) = ((♯‘𝑉) − 1)) | |
10 | 9 | eqcomd 2762 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ 𝑈 ∈ 𝑉) → ((♯‘𝑉) − 1) = (♯‘(𝑉 ∖ {𝑈}))) |
11 | 8, 10 | sylan 489 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘𝑉) − 1) = (♯‘(𝑉 ∖ {𝑈}))) |
12 | 7, 11 | breqtrrd 4828 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑈 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑈)) ≤ ((♯‘𝑉) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1628 ∈ wcel 2135 Vcvv 3336 ∖ cdif 3708 ⊆ wss 3711 {csn 4317 class class class wbr 4800 ‘cfv 6045 (class class class)co 6809 Fincfn 8117 1c1 10125 ≤ cle 10263 − cmin 10454 ♯chash 13307 Vtxcvtx 26069 FinUSGraphcfusgr 26403 NeighbVtx cnbgr 26419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-fal 1634 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-1st 7329 df-2nd 7330 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-oadd 7729 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-fin 8121 df-card 8951 df-cda 9178 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-nn 11209 df-n0 11481 df-xnn0 11552 df-z 11566 df-uz 11876 df-fz 12516 df-hash 13308 df-fusgr 26404 df-nbgr 26420 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |