![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrclOLD | Structured version Visualization version GIF version |
Description: Obsolete version of nbgrcl 26424 as of 12-Feb-2022. (Contributed by AV, 6-Jun-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nbgrclOLD | ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ (Vtx‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nbgr 26422 | . . 3 ⊢ NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) | |
2 | 1 | mpt2xeldm 7504 | . 2 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → (𝐺 ∈ V ∧ 𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔))) |
3 | csbfv 6392 | . . . 4 ⊢ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) = (Vtx‘𝐺) | |
4 | 3 | eleq2i 2829 | . . 3 ⊢ (𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) ↔ 𝑋 ∈ (Vtx‘𝐺)) |
5 | 4 | biimpi 206 | . 2 ⊢ (𝑋 ∈ ⦋𝐺 / 𝑔⦌(Vtx‘𝑔) → 𝑋 ∈ (Vtx‘𝐺)) |
6 | 2, 5 | simpl2im 659 | 1 ⊢ (𝑁 ∈ (𝐺 NeighbVtx 𝑋) → 𝑋 ∈ (Vtx‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2137 ∃wrex 3049 {crab 3052 Vcvv 3338 ⦋csb 3672 ∖ cdif 3710 ⊆ wss 3713 {csn 4319 {cpr 4321 ‘cfv 6047 (class class class)co 6811 Vtxcvtx 26071 Edgcedg 26136 NeighbVtx cnbgr 26421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-id 5172 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-iota 6010 df-fun 6049 df-fv 6055 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-1st 7331 df-2nd 7332 df-nbgr 26422 |
This theorem is referenced by: nbgrelOLD 26431 |
Copyright terms: Public domain | W3C validator |