![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nbgrssvwo2 | Structured version Visualization version GIF version |
Description: The neighbors of a vertex 𝑋 form a subset of all vertices except the vertex 𝑋 itself and a class 𝑀 which is not a neighbor of 𝑋. (Contributed by Alexander van der Vekens, 13-Jul-2018.) (Revised by AV, 3-Nov-2020.) (Revised by AV, 12-Feb-2022.) |
Ref | Expression |
---|---|
nbgrssovtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
nbgrssvwo2 | ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑀, 𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nbgrssovtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | nbgrssovtx 26302 | . . 3 ⊢ (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) |
3 | df-nel 2927 | . . . . 5 ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑋) ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑋)) | |
4 | disjsn 4278 | . . . . 5 ⊢ (((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ (𝐺 NeighbVtx 𝑋)) | |
5 | 3, 4 | sylbb2 228 | . . . 4 ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → ((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅) |
6 | reldisj 4053 | . . . 4 ⊢ ((𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) → (((𝐺 NeighbVtx 𝑋) ∩ {𝑀}) = ∅ ↔ (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀}))) | |
7 | 5, 6 | syl5ib 234 | . . 3 ⊢ ((𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑋}) → (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀}))) |
8 | 2, 7 | ax-mp 5 | . 2 ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ ((𝑉 ∖ {𝑋}) ∖ {𝑀})) |
9 | prcom 4299 | . . . 4 ⊢ {𝑀, 𝑋} = {𝑋, 𝑀} | |
10 | 9 | difeq2i 3758 | . . 3 ⊢ (𝑉 ∖ {𝑀, 𝑋}) = (𝑉 ∖ {𝑋, 𝑀}) |
11 | difpr 4366 | . . 3 ⊢ (𝑉 ∖ {𝑋, 𝑀}) = ((𝑉 ∖ {𝑋}) ∖ {𝑀}) | |
12 | 10, 11 | eqtri 2673 | . 2 ⊢ (𝑉 ∖ {𝑀, 𝑋}) = ((𝑉 ∖ {𝑋}) ∖ {𝑀}) |
13 | 8, 12 | syl6sseqr 3685 | 1 ⊢ (𝑀 ∉ (𝐺 NeighbVtx 𝑋) → (𝐺 NeighbVtx 𝑋) ⊆ (𝑉 ∖ {𝑀, 𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1523 ∈ wcel 2030 ∉ wnel 2926 ∖ cdif 3604 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 {csn 4210 {cpr 4212 ‘cfv 5926 (class class class)co 6690 Vtxcvtx 25919 NeighbVtx cnbgr 26269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-nbgr 26270 |
This theorem is referenced by: nbfusgrlevtxm2 26324 |
Copyright terms: Public domain | W3C validator |