MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbgrsymOLD Structured version   Visualization version   GIF version

Theorem nbgrsymOLD 26455
Description: Obsolete version of nbgrsym 26454 as of 12-Feb-2022. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 27-Oct-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
nbgrsymOLD (𝐺𝑊 → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 NeighbVtx 𝑁)))

Proof of Theorem nbgrsymOLD
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 ancom 465 . . . 4 ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ↔ (𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)))
2 necom 2977 . . . 4 (𝑁𝐾𝐾𝑁)
3 prcom 4403 . . . . . 6 {𝐾, 𝑁} = {𝑁, 𝐾}
43sseq1i 3762 . . . . 5 ({𝐾, 𝑁} ⊆ 𝑒 ↔ {𝑁, 𝐾} ⊆ 𝑒)
54rexbii 3171 . . . 4 (∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒 ↔ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒)
61, 2, 53anbi123i 1158 . . 3 (((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ∧ 𝑁𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒) ↔ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) ∧ 𝐾𝑁 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒))
76a1i 11 . 2 (𝐺𝑊 → (((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ∧ 𝑁𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒) ↔ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) ∧ 𝐾𝑁 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒)))
8 eqid 2752 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
9 eqid 2752 . . 3 (Edg‘𝐺) = (Edg‘𝐺)
108, 9nbgrelOLD 26425 . 2 (𝐺𝑊 → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ ((𝑁 ∈ (Vtx‘𝐺) ∧ 𝐾 ∈ (Vtx‘𝐺)) ∧ 𝑁𝐾 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝐾, 𝑁} ⊆ 𝑒)))
118, 9nbgrelOLD 26425 . 2 (𝐺𝑊 → (𝐾 ∈ (𝐺 NeighbVtx 𝑁) ↔ ((𝐾 ∈ (Vtx‘𝐺) ∧ 𝑁 ∈ (Vtx‘𝐺)) ∧ 𝐾𝑁 ∧ ∃𝑒 ∈ (Edg‘𝐺){𝑁, 𝐾} ⊆ 𝑒)))
127, 10, 113bitr4d 300 1 (𝐺𝑊 → (𝑁 ∈ (𝐺 NeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 NeighbVtx 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wcel 2131  wne 2924  wrex 3043  wss 3707  {cpr 4315  cfv 6041  (class class class)co 6805  Vtxcvtx 26065  Edgcedg 26130   NeighbVtx cnbgr 26415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-id 5166  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fv 6049  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-1st 7325  df-2nd 7326  df-nbgr 26416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator