Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbuhgr2vtx1edgblem Structured version   Visualization version   GIF version

Theorem nbuhgr2vtx1edgblem 26168
 Description: Lemma for nbuhgr2vtx1edgb 26169. This reverse direction of nbgr2vtx1edg 26167 only holds for classes whose edges are subsets of the set of vertices (hypergraphs!) (Contributed by AV, 2-Nov-2020.)
Hypotheses
Ref Expression
nbgr2vtx1edg.v 𝑉 = (Vtx‘𝐺)
nbgr2vtx1edg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbuhgr2vtx1edgblem ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸)
Distinct variable groups:   𝐸,𝑎,𝑏   𝐺,𝑎,𝑏   𝑉,𝑎,𝑏

Proof of Theorem nbuhgr2vtx1edgblem
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 nbgr2vtx1edg.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 nbgr2vtx1edg.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2nbgrel 26159 . . . 4 (𝐺 ∈ UHGraph → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒)))
43adantr 481 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒)))
52eleq2i 2690 . . . . . . . . . 10 (𝑒𝐸𝑒 ∈ (Edg‘𝐺))
6 edguhgr 25953 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
75, 6sylan2b 492 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → 𝑒 ∈ 𝒫 (Vtx‘𝐺))
81eqeq1i 2626 . . . . . . . . . . . . 13 (𝑉 = {𝑎, 𝑏} ↔ (Vtx‘𝐺) = {𝑎, 𝑏})
9 pweq 4139 . . . . . . . . . . . . . . 15 ((Vtx‘𝐺) = {𝑎, 𝑏} → 𝒫 (Vtx‘𝐺) = 𝒫 {𝑎, 𝑏})
109eleq2d 2684 . . . . . . . . . . . . . 14 ((Vtx‘𝐺) = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ∈ 𝒫 {𝑎, 𝑏}))
11 selpw 4143 . . . . . . . . . . . . . 14 (𝑒 ∈ 𝒫 {𝑎, 𝑏} ↔ 𝑒 ⊆ {𝑎, 𝑏})
1210, 11syl6bb 276 . . . . . . . . . . . . 13 ((Vtx‘𝐺) = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
138, 12sylbi 207 . . . . . . . . . . . 12 (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
1413adantl 482 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ↔ 𝑒 ⊆ {𝑎, 𝑏}))
15 prcom 4244 . . . . . . . . . . . . . . . 16 {𝑏, 𝑎} = {𝑎, 𝑏}
1615sseq1i 3614 . . . . . . . . . . . . . . 15 ({𝑏, 𝑎} ⊆ 𝑒 ↔ {𝑎, 𝑏} ⊆ 𝑒)
17 eqss 3603 . . . . . . . . . . . . . . . . 17 ({𝑎, 𝑏} = 𝑒 ↔ ({𝑎, 𝑏} ⊆ 𝑒𝑒 ⊆ {𝑎, 𝑏}))
18 eleq1a 2693 . . . . . . . . . . . . . . . . . . 19 (𝑒𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸))
1918a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (𝑒𝐸 → ({𝑎, 𝑏} = 𝑒 → {𝑎, 𝑏} ∈ 𝐸)))
2019com13 88 . . . . . . . . . . . . . . . . 17 ({𝑎, 𝑏} = 𝑒 → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
2117, 20sylbir 225 . . . . . . . . . . . . . . . 16 (({𝑎, 𝑏} ⊆ 𝑒𝑒 ⊆ {𝑎, 𝑏}) → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))
2221ex 450 . . . . . . . . . . . . . . 15 ({𝑎, 𝑏} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2316, 22sylbi 207 . . . . . . . . . . . . . 14 ({𝑏, 𝑎} ⊆ 𝑒 → (𝑒 ⊆ {𝑎, 𝑏} → (𝑒𝐸 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2423com13 88 . . . . . . . . . . . . 13 (𝑒𝐸 → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2524adantl 482 . . . . . . . . . . . 12 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2625adantr 481 . . . . . . . . . . 11 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ⊆ {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2714, 26sylbid 230 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ 𝑒𝐸) ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
2827ex 450 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑉 = {𝑎, 𝑏} → (𝑒 ∈ 𝒫 (Vtx‘𝐺) → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸)))))
297, 28mpid 44 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑒𝐸) → (𝑉 = {𝑎, 𝑏} → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
3029impancom 456 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑒𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → {𝑎, 𝑏} ∈ 𝐸))))
3130com14 96 . . . . . 6 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (𝑒𝐸 → ({𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸))))
3231rexlimdv 3025 . . . . 5 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏) → (∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒 → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸)))
33323impia 1258 . . . 4 (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒) → ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → {𝑎, 𝑏} ∈ 𝐸))
3433com12 32 . . 3 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (((𝑎𝑉𝑏𝑉) ∧ 𝑎𝑏 ∧ ∃𝑒𝐸 {𝑏, 𝑎} ⊆ 𝑒) → {𝑎, 𝑏} ∈ 𝐸))
354, 34sylbid 230 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏}) → (𝑎 ∈ (𝐺 NeighbVtx 𝑏) → {𝑎, 𝑏} ∈ 𝐸))
36353impia 1258 1 ((𝐺 ∈ UHGraph ∧ 𝑉 = {𝑎, 𝑏} ∧ 𝑎 ∈ (𝐺 NeighbVtx 𝑏)) → {𝑎, 𝑏} ∈ 𝐸)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2909   ⊆ wss 3560  𝒫 cpw 4136  {cpr 4157  ‘cfv 5857  (class class class)co 6615  Vtxcvtx 25808  Edgcedg 25873   UHGraph cuhgr 25881   NeighbVtx cnbgr 26145 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-edg 25874  df-uhgr 25883  df-nbgr 26149 This theorem is referenced by:  nbuhgr2vtx1edgb  26169
 Copyright terms: Public domain W3C validator