MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbumgrvtx Structured version   Visualization version   GIF version

Theorem nbumgrvtx 27055
Description: The set of neighbors of a vertex in a multigraph. (Contributed by AV, 27-Nov-2020.) (Proof shortened by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
nbuhgr.v 𝑉 = (Vtx‘𝐺)
nbuhgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbumgrvtx ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑛,𝐺   𝑛,𝑁   𝑛,𝑉   𝑛,𝐸

Proof of Theorem nbumgrvtx
Dummy variables 𝑒 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nbuhgr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbuhgr.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbgrval 27045 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒})
43adantl 482 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒})
5 eldifi 4100 . . . . . . . . . 10 (𝑥 ∈ (𝑉 ∖ {𝑁}) → 𝑥𝑉)
65adantl 482 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑥𝑉)
76adantr 481 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒)) → 𝑥𝑉)
8 umgrupgr 26815 . . . . . . . . . . . . 13 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
98ad4antr 728 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → 𝐺 ∈ UPGraph)
10 simpr 485 . . . . . . . . . . . . 13 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → 𝑒𝐸)
1110adantr 481 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → 𝑒𝐸)
12 simpr 485 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → {𝑁, 𝑥} ⊆ 𝑒)
13 simpr 485 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝑁𝑉)
1413adantr 481 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑉)
15 vex 3495 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
1615a1i 11 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑥 ∈ V)
17 eldifsn 4711 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑥𝑉𝑥𝑁))
18 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑉𝑥𝑁) → 𝑥𝑁)
1918necomd 3068 . . . . . . . . . . . . . . . . 17 ((𝑥𝑉𝑥𝑁) → 𝑁𝑥)
2017, 19sylbi 218 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑉 ∖ {𝑁}) → 𝑁𝑥)
2120adantl 482 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑥)
2214, 16, 213jca 1120 . . . . . . . . . . . . . 14 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥))
2322adantr 481 . . . . . . . . . . . . 13 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥))
2423adantr 481 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥))
251, 2upgredgpr 26854 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒) ∧ (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥)) → {𝑁, 𝑥} = 𝑒)
269, 11, 12, 24, 25syl31anc 1365 . . . . . . . . . . 11 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → {𝑁, 𝑥} = 𝑒)
2726ex 413 . . . . . . . . . 10 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑥} ⊆ 𝑒 → {𝑁, 𝑥} = 𝑒))
28 eleq1 2897 . . . . . . . . . . 11 ({𝑁, 𝑥} = 𝑒 → ({𝑁, 𝑥} ∈ 𝐸𝑒𝐸))
2928biimprd 249 . . . . . . . . . 10 ({𝑁, 𝑥} = 𝑒 → (𝑒𝐸 → {𝑁, 𝑥} ∈ 𝐸))
3027, 10, 29syl6ci 71 . . . . . . . . 9 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑥} ⊆ 𝑒 → {𝑁, 𝑥} ∈ 𝐸))
3130impr 455 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒)) → {𝑁, 𝑥} ∈ 𝐸)
327, 31jca 512 . . . . . . 7 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒)) → (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸))
3332rexlimdvaa 3282 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒 → (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)))
3433expimpd 454 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒) → (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)))
35 simprl 767 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑥𝑉)
362umgredgne 26857 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑥} ∈ 𝐸) → 𝑁𝑥)
3736ad2ant2rl 745 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑁𝑥)
3837necomd 3068 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑥𝑁)
3935, 38, 17sylanbrc 583 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑥 ∈ (𝑉 ∖ {𝑁}))
40 simpr 485 . . . . . . . . 9 ((𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸) → {𝑁, 𝑥} ∈ 𝐸)
4140adantl 482 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → {𝑁, 𝑥} ∈ 𝐸)
42 sseq2 3990 . . . . . . . . 9 (𝑒 = {𝑁, 𝑥} → ({𝑁, 𝑥} ⊆ 𝑒 ↔ {𝑁, 𝑥} ⊆ {𝑁, 𝑥}))
4342adantl 482 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) ∧ 𝑒 = {𝑁, 𝑥}) → ({𝑁, 𝑥} ⊆ 𝑒 ↔ {𝑁, 𝑥} ⊆ {𝑁, 𝑥}))
44 ssidd 3987 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → {𝑁, 𝑥} ⊆ {𝑁, 𝑥})
4541, 43, 44rspcedvd 3623 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒)
4639, 45jca 512 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → (𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒))
4746ex 413 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸) → (𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒)))
4834, 47impbid 213 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒) ↔ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)))
49 preq2 4662 . . . . . . 7 (𝑣 = 𝑥 → {𝑁, 𝑣} = {𝑁, 𝑥})
5049sseq1d 3995 . . . . . 6 (𝑣 = 𝑥 → ({𝑁, 𝑣} ⊆ 𝑒 ↔ {𝑁, 𝑥} ⊆ 𝑒))
5150rexbidv 3294 . . . . 5 (𝑣 = 𝑥 → (∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒))
5251elrab 3677 . . . 4 (𝑥 ∈ {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒} ↔ (𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒))
53 preq2 4662 . . . . . 6 (𝑛 = 𝑥 → {𝑁, 𝑛} = {𝑁, 𝑥})
5453eleq1d 2894 . . . . 5 (𝑛 = 𝑥 → ({𝑁, 𝑛} ∈ 𝐸 ↔ {𝑁, 𝑥} ∈ 𝐸))
5554elrab 3677 . . . 4 (𝑥 ∈ {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ↔ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸))
5648, 52, 553bitr4g 315 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝑥 ∈ {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒} ↔ 𝑥 ∈ {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}))
5756eqrdv 2816 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒} = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
584, 57eqtrd 2853 1 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  wrex 3136  {crab 3139  Vcvv 3492  cdif 3930  wss 3933  {csn 4557  {cpr 4559  cfv 6348  (class class class)co 7145  Vtxcvtx 26708  Edgcedg 26759  UPGraphcupgr 26792  UMGraphcumgr 26793   NeighbVtx cnbgr 27041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12881  df-hash 13679  df-edg 26760  df-upgr 26794  df-umgr 26795  df-nbgr 27042
This theorem is referenced by:  nbumgr  27056  nbusgrvtx  27057  umgr2v2enb1  27235
  Copyright terms: Public domain W3C validator