MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncolrot1 Structured version   Visualization version   GIF version

Theorem ncolrot1 26276
Description: Rotating non-colinear points. (Contributed by Thierry Arnoux, 19-Oct-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
ncolrot (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Assertion
Ref Expression
ncolrot1 (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))

Proof of Theorem ncolrot1
StepHypRef Expression
1 ncolrot . 2 (𝜑 → ¬ (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
2 tglngval.p . . 3 𝑃 = (Base‘𝐺)
3 tglngval.l . . 3 𝐿 = (LineG‘𝐺)
4 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
5 tglngval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
65adantr 481 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → 𝐺 ∈ TarskiG)
7 tglngval.y . . . 4 (𝜑𝑌𝑃)
87adantr 481 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → 𝑌𝑃)
9 tgcolg.z . . . 4 (𝜑𝑍𝑃)
109adantr 481 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → 𝑍𝑃)
11 tglngval.x . . . 4 (𝜑𝑋𝑃)
1211adantr 481 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → 𝑋𝑃)
13 simpr 485 . . 3 ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
142, 3, 4, 6, 8, 10, 12, 13colrot2 26274 . 2 ((𝜑 ∧ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍)) → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
151, 14mtand 812 1 (𝜑 → ¬ (𝑋 ∈ (𝑌𝐿𝑍) ∨ 𝑌 = 𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 841   = wceq 1528  wcel 2105  cfv 6349  (class class class)co 7145  Basecbs 16473  TarskiGcstrkg 26144  Itvcitv 26150  LineGclng 26151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fv 6357  df-ov 7148  df-oprab 7149  df-mpo 7150  df-trkgc 26162  df-trkgb 26163  df-trkgcb 26164  df-trkg 26167
This theorem is referenced by:  outpasch  26469  acopy  26547  cgrg3col4  26567  isoas  26578
  Copyright terms: Public domain W3C validator