MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nconnsubb Structured version   Visualization version   GIF version

Theorem nconnsubb 21274
Description: Disconnectedness for a subspace. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
nconnsubb.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
nconnsubb.3 (𝜑𝐴𝑋)
nconnsubb.4 (𝜑𝑈𝐽)
nconnsubb.5 (𝜑𝑉𝐽)
nconnsubb.6 (𝜑 → (𝑈𝐴) ≠ ∅)
nconnsubb.7 (𝜑 → (𝑉𝐴) ≠ ∅)
nconnsubb.8 (𝜑 → ((𝑈𝑉) ∩ 𝐴) = ∅)
nconnsubb.9 (𝜑𝐴 ⊆ (𝑈𝑉))
Assertion
Ref Expression
nconnsubb (𝜑 → ¬ (𝐽t 𝐴) ∈ Conn)

Proof of Theorem nconnsubb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nconnsubb.9 . 2 (𝜑𝐴 ⊆ (𝑈𝑉))
2 nconnsubb.2 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 nconnsubb.3 . . . 4 (𝜑𝐴𝑋)
4 connsuba 21271 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐴𝑋) → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
52, 3, 4syl2anc 694 . . 3 (𝜑 → ((𝐽t 𝐴) ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴)))
6 nconnsubb.6 . . . . 5 (𝜑 → (𝑈𝐴) ≠ ∅)
7 nconnsubb.7 . . . . 5 (𝜑 → (𝑉𝐴) ≠ ∅)
8 nconnsubb.8 . . . . 5 (𝜑 → ((𝑈𝑉) ∩ 𝐴) = ∅)
96, 7, 83jca 1261 . . . 4 (𝜑 → ((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅))
10 nconnsubb.4 . . . . 5 (𝜑𝑈𝐽)
11 nconnsubb.5 . . . . 5 (𝜑𝑉𝐽)
12 ineq1 3840 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥𝐴) = (𝑈𝐴))
1312neeq1d 2882 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥𝐴) ≠ ∅ ↔ (𝑈𝐴) ≠ ∅))
14 ineq1 3840 . . . . . . . . . 10 (𝑥 = 𝑈 → (𝑥𝑦) = (𝑈𝑦))
1514ineq1d 3846 . . . . . . . . 9 (𝑥 = 𝑈 → ((𝑥𝑦) ∩ 𝐴) = ((𝑈𝑦) ∩ 𝐴))
1615eqeq1d 2653 . . . . . . . 8 (𝑥 = 𝑈 → (((𝑥𝑦) ∩ 𝐴) = ∅ ↔ ((𝑈𝑦) ∩ 𝐴) = ∅))
1713, 163anbi13d 1441 . . . . . . 7 (𝑥 = 𝑈 → (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) ↔ ((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅)))
18 uneq1 3793 . . . . . . . . 9 (𝑥 = 𝑈 → (𝑥𝑦) = (𝑈𝑦))
1918ineq1d 3846 . . . . . . . 8 (𝑥 = 𝑈 → ((𝑥𝑦) ∩ 𝐴) = ((𝑈𝑦) ∩ 𝐴))
2019neeq1d 2882 . . . . . . 7 (𝑥 = 𝑈 → (((𝑥𝑦) ∩ 𝐴) ≠ 𝐴 ↔ ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴))
2117, 20imbi12d 333 . . . . . 6 (𝑥 = 𝑈 → ((((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) ↔ (((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) → ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴)))
22 ineq1 3840 . . . . . . . . 9 (𝑦 = 𝑉 → (𝑦𝐴) = (𝑉𝐴))
2322neeq1d 2882 . . . . . . . 8 (𝑦 = 𝑉 → ((𝑦𝐴) ≠ ∅ ↔ (𝑉𝐴) ≠ ∅))
24 ineq2 3841 . . . . . . . . . 10 (𝑦 = 𝑉 → (𝑈𝑦) = (𝑈𝑉))
2524ineq1d 3846 . . . . . . . . 9 (𝑦 = 𝑉 → ((𝑈𝑦) ∩ 𝐴) = ((𝑈𝑉) ∩ 𝐴))
2625eqeq1d 2653 . . . . . . . 8 (𝑦 = 𝑉 → (((𝑈𝑦) ∩ 𝐴) = ∅ ↔ ((𝑈𝑉) ∩ 𝐴) = ∅))
2723, 263anbi23d 1442 . . . . . . 7 (𝑦 = 𝑉 → (((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) ↔ ((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅)))
28 sseqin2 3850 . . . . . . . . 9 (𝐴 ⊆ (𝑈𝑦) ↔ ((𝑈𝑦) ∩ 𝐴) = 𝐴)
2928necon3bbii 2870 . . . . . . . 8 𝐴 ⊆ (𝑈𝑦) ↔ ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴)
30 uneq2 3794 . . . . . . . . . 10 (𝑦 = 𝑉 → (𝑈𝑦) = (𝑈𝑉))
3130sseq2d 3666 . . . . . . . . 9 (𝑦 = 𝑉 → (𝐴 ⊆ (𝑈𝑦) ↔ 𝐴 ⊆ (𝑈𝑉)))
3231notbid 307 . . . . . . . 8 (𝑦 = 𝑉 → (¬ 𝐴 ⊆ (𝑈𝑦) ↔ ¬ 𝐴 ⊆ (𝑈𝑉)))
3329, 32syl5bbr 274 . . . . . . 7 (𝑦 = 𝑉 → (((𝑈𝑦) ∩ 𝐴) ≠ 𝐴 ↔ ¬ 𝐴 ⊆ (𝑈𝑉)))
3427, 33imbi12d 333 . . . . . 6 (𝑦 = 𝑉 → ((((𝑈𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑈𝑦) ∩ 𝐴) = ∅) → ((𝑈𝑦) ∩ 𝐴) ≠ 𝐴) ↔ (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
3521, 34rspc2v 3353 . . . . 5 ((𝑈𝐽𝑉𝐽) → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
3610, 11, 35syl2anc 694 . . . 4 (𝜑 → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → (((𝑈𝐴) ≠ ∅ ∧ (𝑉𝐴) ≠ ∅ ∧ ((𝑈𝑉) ∩ 𝐴) = ∅) → ¬ 𝐴 ⊆ (𝑈𝑉))))
379, 36mpid 44 . . 3 (𝜑 → (∀𝑥𝐽𝑦𝐽 (((𝑥𝐴) ≠ ∅ ∧ (𝑦𝐴) ≠ ∅ ∧ ((𝑥𝑦) ∩ 𝐴) = ∅) → ((𝑥𝑦) ∩ 𝐴) ≠ 𝐴) → ¬ 𝐴 ⊆ (𝑈𝑉)))
385, 37sylbid 230 . 2 (𝜑 → ((𝐽t 𝐴) ∈ Conn → ¬ 𝐴 ⊆ (𝑈𝑉)))
391, 38mt2d 131 1 (𝜑 → ¬ (𝐽t 𝐴) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  cun 3605  cin 3606  wss 3607  c0 3948  cfv 5926  (class class class)co 6690  t crest 16128  TopOnctopon 20763  Conncconn 21262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609  df-er 7787  df-en 7998  df-fin 8001  df-fi 8358  df-rest 16130  df-topgen 16151  df-top 20747  df-topon 20764  df-bases 20798  df-cld 20871  df-conn 21263
This theorem is referenced by:  iunconnlem  21278  clsconn  21281  reconnlem1  22676  ordtconnlem1  30098
  Copyright terms: Public domain W3C validator