MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncoprmgcdne1b Structured version   Visualization version   GIF version

Theorem ncoprmgcdne1b 15565
Description: Two positive integers are not coprime, i.e. there is an integer greater than 1 which divides both integers, iff their greatest common divisor is not 1. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmgcdne1b ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Distinct variable groups:   𝐴,𝑖   𝐵,𝑖

Proof of Theorem ncoprmgcdne1b
StepHypRef Expression
1 eluz2nn 11919 . . . . . . 7 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℕ)
21adantr 472 . . . . . 6 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ ℕ)
3 simpr 479 . . . . . . 7 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖𝐴𝑖𝐵))
4 eluz2b3 11955 . . . . . . . . 9 (𝑖 ∈ (ℤ‘2) ↔ (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1))
5 df-ne 2933 . . . . . . . . . . 11 (𝑖 ≠ 1 ↔ ¬ 𝑖 = 1)
65biimpi 206 . . . . . . . . . 10 (𝑖 ≠ 1 → ¬ 𝑖 = 1)
76adantl 473 . . . . . . . . 9 ((𝑖 ∈ ℕ ∧ 𝑖 ≠ 1) → ¬ 𝑖 = 1)
84, 7sylbi 207 . . . . . . . 8 (𝑖 ∈ (ℤ‘2) → ¬ 𝑖 = 1)
98adantr 472 . . . . . . 7 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → ¬ 𝑖 = 1)
103, 9jca 555 . . . . . 6 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))
112, 10jca 555 . . . . 5 ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)))
125biimpri 218 . . . . . . . . . . . . . 14 𝑖 = 1 → 𝑖 ≠ 1)
1312anim1i 593 . . . . . . . . . . . . 13 ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ≠ 1 ∧ 𝑖 ∈ ℕ))
1413ancomd 466 . . . . . . . . . . . 12 ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → (𝑖 ∈ ℕ ∧ 𝑖 ≠ 1))
1514, 4sylibr 224 . . . . . . . . . . 11 ((¬ 𝑖 = 1 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ (ℤ‘2))
1615ex 449 . . . . . . . . . 10 𝑖 = 1 → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ‘2)))
1716adantl 473 . . . . . . . . 9 (((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) → (𝑖 ∈ ℕ → 𝑖 ∈ (ℤ‘2)))
1817impcom 445 . . . . . . . 8 ((𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)) → 𝑖 ∈ (ℤ‘2))
1918adantl 473 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))) → 𝑖 ∈ (ℤ‘2))
20 simprrl 823 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖𝐴𝑖𝐵))
2119, 20jca 555 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) ∧ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))) → (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)))
2221ex 449 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)) → (𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵))))
2311, 22impbid2 216 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) ↔ (𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))))
2423exbidv 1999 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖(𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)) ↔ ∃𝑖(𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1))))
25 df-rex 3056 . . 3 (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ ∃𝑖(𝑖 ∈ (ℤ‘2) ∧ (𝑖𝐴𝑖𝐵)))
26 df-rex 3056 . . 3 (∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) ↔ ∃𝑖(𝑖 ∈ ℕ ∧ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)))
2724, 25, 263bitr4g 303 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ ∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1)))
28 rexanali 3136 . . 3 (∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1))
2928a1i 11 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) ∧ ¬ 𝑖 = 1) ↔ ¬ ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1)))
30 coprmgcdb 15564 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) = 1))
3130necon3bbid 2969 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (¬ ∀𝑖 ∈ ℕ ((𝑖𝐴𝑖𝐵) → 𝑖 = 1) ↔ (𝐴 gcd 𝐵) ≠ 1))
3227, 29, 313bitrd 294 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ (𝐴 gcd 𝐵) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wex 1853  wcel 2139  wne 2932  wral 3050  wrex 3051   class class class wbr 4804  cfv 6049  (class class class)co 6813  1c1 10129  cn 11212  2c2 11262  cuz 11879  cdvds 15182   gcd cgcd 15418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-z 11570  df-uz 11880  df-rp 12026  df-seq 12996  df-exp 13055  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-gcd 15419
This theorem is referenced by:  ncoprmgcdgt1b  15566
  Copyright terms: Public domain W3C validator