Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncoprmlnprm Structured version   Visualization version   GIF version

Theorem ncoprmlnprm 15483
 Description: If two positive integers are not coprime, the larger of them is not a prime number. (Contributed by AV, 9-Aug-2020.)
Assertion
Ref Expression
ncoprmlnprm ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) → 𝐵 ∉ ℙ))

Proof of Theorem ncoprmlnprm
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ncoprmgcdgt1b 15411 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) ↔ 1 < (𝐴 gcd 𝐵)))
21bicomd 213 . . 3 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (1 < (𝐴 gcd 𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
323adant3 1101 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) ↔ ∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵)))
4 simp1 1081 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℕ)
5 eluzelz 11735 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℤ)
64, 5anim12ci 590 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ))
7 dvdsle 15079 . . . . . . . . . . . . 13 ((𝑖 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝑖𝐴𝑖𝐴))
86, 7syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖𝐴))
9 nnre 11065 . . . . . . . . . . . . . . . . . . . . . 22 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
10 nnre 11065 . . . . . . . . . . . . . . . . . . . . . 22 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
11 eluzelre 11736 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ (ℤ‘2) → 𝑖 ∈ ℝ)
129, 10, 113anim123i 1266 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ))
13 3anrot 1060 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ↔ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑖 ∈ ℝ))
1412, 13sylibr 224 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
15 lelttr 10166 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑖𝐴𝐴 < 𝐵) → 𝑖 < 𝐵))
1614, 15syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → ((𝑖𝐴𝐴 < 𝐵) → 𝑖 < 𝐵))
1716expcomd 453 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑖 ∈ (ℤ‘2)) → (𝐴 < 𝐵 → (𝑖𝐴𝑖 < 𝐵)))
18173exp 1283 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝑖 ∈ (ℤ‘2) → (𝐴 < 𝐵 → (𝑖𝐴𝑖 < 𝐵)))))
1918com34 91 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 < 𝐵 → (𝑖 ∈ (ℤ‘2) → (𝑖𝐴𝑖 < 𝐵)))))
20193imp1 1302 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖 < 𝐵))
2120imp 444 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → 𝑖 < 𝐵)
22 nnz 11437 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
23223ad2ant2 1103 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℤ)
2423, 5anim12ci 590 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ))
2524adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → (𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ))
26 zltlem1 11468 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑖 < 𝐵𝑖 ≤ (𝐵 − 1)))
2725, 26syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → (𝑖 < 𝐵𝑖 ≤ (𝐵 − 1)))
2821, 27mpbid 222 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ 𝑖𝐴) → 𝑖 ≤ (𝐵 − 1))
2928ex 449 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖𝐴𝑖 ≤ (𝐵 − 1)))
308, 29syldc 48 . . . . . . . . . . 11 (𝑖𝐴 → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → 𝑖 ≤ (𝐵 − 1)))
3130adantr 480 . . . . . . . . . 10 ((𝑖𝐴𝑖𝐵) → (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → 𝑖 ≤ (𝐵 − 1)))
3231impcom 445 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ≤ (𝐵 − 1))
33 peano2zm 11458 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
3422, 33syl 17 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → (𝐵 − 1) ∈ ℤ)
35343ad2ant2 1103 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (𝐵 − 1) ∈ ℤ)
3635anim1i 591 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → ((𝐵 − 1) ∈ ℤ ∧ 𝑖 ∈ (ℤ‘2)))
3736ancomd 466 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → (𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ))
3837adantr 480 . . . . . . . . . 10 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ))
39 elfz5 12372 . . . . . . . . . 10 ((𝑖 ∈ (ℤ‘2) ∧ (𝐵 − 1) ∈ ℤ) → (𝑖 ∈ (2...(𝐵 − 1)) ↔ 𝑖 ≤ (𝐵 − 1)))
4038, 39syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (𝑖 ∈ (2...(𝐵 − 1)) ↔ 𝑖 ≤ (𝐵 − 1)))
4132, 40mpbird 247 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖 ∈ (2...(𝐵 − 1)))
42 breq1 4688 . . . . . . . . 9 (𝑗 = 𝑖 → (𝑗𝐵𝑖𝐵))
4342adantl 481 . . . . . . . 8 (((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) ∧ 𝑗 = 𝑖) → (𝑗𝐵𝑖𝐵))
44 simprr 811 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝑖𝐵)
4541, 43, 44rspcedvd 3348 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
46 rexnal 3024 . . . . . . . 8 (∃𝑗 ∈ (2...(𝐵 − 1)) ¬ ¬ 𝑗𝐵 ↔ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵)
47 notnotb 304 . . . . . . . . . 10 (𝑗𝐵 ↔ ¬ ¬ 𝑗𝐵)
4847bicomi 214 . . . . . . . . 9 (¬ ¬ 𝑗𝐵𝑗𝐵)
4948rexbii 3070 . . . . . . . 8 (∃𝑗 ∈ (2...(𝐵 − 1)) ¬ ¬ 𝑗𝐵 ↔ ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
5046, 49bitr3i 266 . . . . . . 7 (¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵 ↔ ∃𝑗 ∈ (2...(𝐵 − 1))𝑗𝐵)
5145, 50sylibr 224 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵)
5251olcd 407 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
53 df-nel 2927 . . . . . 6 (𝐵 ∉ ℙ ↔ ¬ 𝐵 ∈ ℙ)
54 ianor 508 . . . . . . 7 (¬ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵) ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
55 isprm3 15443 . . . . . . 7 (𝐵 ∈ ℙ ↔ (𝐵 ∈ (ℤ‘2) ∧ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5654, 55xchnxbir 322 . . . . . 6 𝐵 ∈ ℙ ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5753, 56bitri 264 . . . . 5 (𝐵 ∉ ℙ ↔ (¬ 𝐵 ∈ (ℤ‘2) ∨ ¬ ∀𝑗 ∈ (2...(𝐵 − 1)) ¬ 𝑗𝐵))
5852, 57sylibr 224 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) ∧ (𝑖𝐴𝑖𝐵)) → 𝐵 ∉ ℙ)
5958ex 449 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) ∧ 𝑖 ∈ (ℤ‘2)) → ((𝑖𝐴𝑖𝐵) → 𝐵 ∉ ℙ))
6059rexlimdva 3060 . 2 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (∃𝑖 ∈ (ℤ‘2)(𝑖𝐴𝑖𝐵) → 𝐵 ∉ ℙ))
613, 60sylbid 230 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐴 < 𝐵) → (1 < (𝐴 gcd 𝐵) → 𝐵 ∉ ℙ))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   ∈ wcel 2030   ∉ wnel 2926  ∀wral 2941  ∃wrex 2942   class class class wbr 4685  ‘cfv 5926  (class class class)co 6690  ℝcr 9973  1c1 9975   < clt 10112   ≤ cle 10113   − cmin 10304  ℕcn 11058  2c2 11108  ℤcz 11415  ℤ≥cuz 11725  ...cfz 12364   ∥ cdvds 15027   gcd cgcd 15263  ℙcprime 15432 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-gcd 15264  df-prm 15433 This theorem is referenced by:  prmgaplem7  15808
 Copyright terms: Public domain W3C validator