MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvs1 Structured version   Visualization version   GIF version

Theorem ncvs1 23760
Description: From any nonzero vector of a normed subcomplex vector space, construct a collinear vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvs1.x 𝑋 = (Base‘𝐺)
ncvs1.n 𝑁 = (norm‘𝐺)
ncvs1.z 0 = (0g𝐺)
ncvs1.s · = ( ·𝑠𝐺)
ncvs1.f 𝐹 = (Scalar‘𝐺)
ncvs1.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
ncvs1 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = 1)

Proof of Theorem ncvs1
StepHypRef Expression
1 simp1 1132 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 𝐺 ∈ (NrmVec ∩ ℂVec))
2 simp3 1134 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ 𝐾)
3 elin 4168 . . . . . . . . 9 (𝐺 ∈ (NrmVec ∩ ℂVec) ↔ (𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec))
4 nvcnlm 23304 . . . . . . . . . . 11 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod)
5 nlmngp 23285 . . . . . . . . . . 11 (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp)
64, 5syl 17 . . . . . . . . . 10 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp)
76adantr 483 . . . . . . . . 9 ((𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec) → 𝐺 ∈ NrmGrp)
83, 7sylbi 219 . . . . . . . 8 (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ NrmGrp)
9 simpl 485 . . . . . . . 8 ((𝐴𝑋𝐴0 ) → 𝐴𝑋)
108, 9anim12i 614 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝐺 ∈ NrmGrp ∧ 𝐴𝑋))
11 ncvs1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
12 ncvs1.n . . . . . . . 8 𝑁 = (norm‘𝐺)
1311, 12nmcl 23224 . . . . . . 7 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1410, 13syl 17 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝑁𝐴) ∈ ℝ)
15 ncvs1.z . . . . . . . . . . . 12 0 = (0g𝐺)
1611, 12, 15nmeq0 23226 . . . . . . . . . . 11 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 0 ))
1716bicomd 225 . . . . . . . . . 10 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐴 = 0 ↔ (𝑁𝐴) = 0))
188, 17sylan 582 . . . . . . . . 9 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴 = 0 ↔ (𝑁𝐴) = 0))
1918necon3bid 3060 . . . . . . . 8 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴0 ↔ (𝑁𝐴) ≠ 0))
2019biimpd 231 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴0 → (𝑁𝐴) ≠ 0))
2120impr 457 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝑁𝐴) ≠ 0)
2214, 21rereccld 11466 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (1 / (𝑁𝐴)) ∈ ℝ)
23223adant3 1128 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ ℝ)
242, 23elind 4170 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ (𝐾 ∩ ℝ))
25 1re 10640 . . . . . . . 8 1 ∈ ℝ
26 0le1 11162 . . . . . . . 8 0 ≤ 1
2725, 26pm3.2i 473 . . . . . . 7 (1 ∈ ℝ ∧ 0 ≤ 1)
2827a1i 11 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (1 ∈ ℝ ∧ 0 ≤ 1))
29 simprr 771 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → 𝐴0 )
3011, 12, 15nmgt0 23238 . . . . . . . 8 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐴0 ↔ 0 < (𝑁𝐴)))
3110, 30syl 17 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝐴0 ↔ 0 < (𝑁𝐴)))
3229, 31mpbid 234 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → 0 < (𝑁𝐴))
3328, 14, 32jca32 518 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))))
34333adant3 1128 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))))
35 divge0 11508 . . . 4 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))) → 0 ≤ (1 / (𝑁𝐴)))
3634, 35syl 17 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 0 ≤ (1 / (𝑁𝐴)))
37 simp2l 1195 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 𝐴𝑋)
38 ncvs1.s . . . 4 · = ( ·𝑠𝐺)
39 ncvs1.f . . . 4 𝐹 = (Scalar‘𝐺)
40 ncvs1.k . . . 4 𝐾 = (Base‘𝐹)
4111, 12, 38, 39, 40ncvsge0 23756 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ ((1 / (𝑁𝐴)) ∈ (𝐾 ∩ ℝ) ∧ 0 ≤ (1 / (𝑁𝐴))) ∧ 𝐴𝑋) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = ((1 / (𝑁𝐴)) · (𝑁𝐴)))
421, 24, 36, 37, 41syl121anc 1371 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = ((1 / (𝑁𝐴)) · (𝑁𝐴)))
43103adant3 1128 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝐺 ∈ NrmGrp ∧ 𝐴𝑋))
4443, 13syl 17 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ∈ ℝ)
4544recnd 10668 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ∈ ℂ)
46213adant3 1128 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ≠ 0)
4745, 46recid2d 11411 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → ((1 / (𝑁𝐴)) · (𝑁𝐴)) = 1)
4842, 47eqtrd 2856 1 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  cin 3934   class class class wbr 5065  cfv 6354  (class class class)co 7155  cr 10535  0cc0 10536  1c1 10537   · cmul 10541   < clt 10674  cle 10675   / cdiv 11296  Basecbs 16482  Scalarcsca 16567   ·𝑠 cvsca 16568  0gc0g 16712  normcnm 23185  NrmGrpcngp 23186  NrmModcnlm 23189  NrmVeccnvc 23190  ℂVecccvs 23726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-fz 12892  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-0g 16714  df-topgen 16716  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-grp 18105  df-subg 18275  df-cmn 18907  df-mgp 19239  df-ring 19298  df-cring 19299  df-subrg 19532  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-xms 22929  df-ms 22930  df-nm 23191  df-ngp 23192  df-nlm 23195  df-nvc 23196  df-clm 23666  df-cvs 23727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator