Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvsi Structured version   Visualization version   GIF version

Theorem ncvsi 23149
 Description: The properties of a normed subcomplex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 7-Oct-2021.)
Hypotheses
Ref Expression
isncvsngp.v 𝑉 = (Base‘𝑊)
isncvsngp.n 𝑁 = (norm‘𝑊)
isncvsngp.s · = ( ·𝑠𝑊)
isncvsngp.f 𝐹 = (Scalar‘𝑊)
isncvsngp.k 𝐾 = (Base‘𝐹)
ncvsi.m = (-g𝑊)
ncvsi.0 0 = (0g𝑊)
Assertion
Ref Expression
ncvsi (𝑊 ∈ (NrmVec ∩ ℂVec) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
Distinct variable groups:   𝑘,𝐹,𝑥   𝑘,𝐾,𝑥   𝑘,𝑁,𝑥   𝑘,𝑉,𝑥   𝑘,𝑊,𝑥   · ,𝑘,𝑥   𝑦,𝑉   𝑦,𝑊,𝑥
Allowed substitution hints:   · (𝑦)   𝐹(𝑦)   𝐾(𝑦)   (𝑥,𝑦,𝑘)   𝑁(𝑦)   0 (𝑥,𝑦,𝑘)

Proof of Theorem ncvsi
StepHypRef Expression
1 isncvsngp.v . . 3 𝑉 = (Base‘𝑊)
2 isncvsngp.n . . 3 𝑁 = (norm‘𝑊)
3 isncvsngp.s . . 3 · = ( ·𝑠𝑊)
4 isncvsngp.f . . 3 𝐹 = (Scalar‘𝑊)
5 isncvsngp.k . . 3 𝐾 = (Base‘𝐹)
61, 2, 3, 4, 5isncvsngp 23147 . 2 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
7 simp1 1131 . . 3 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) → 𝑊 ∈ ℂVec)
81, 2nmf 22618 . . . 4 (𝑊 ∈ NrmGrp → 𝑁:𝑉⟶ℝ)
983ad2ant2 1129 . . 3 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) → 𝑁:𝑉⟶ℝ)
10 ncvsi.m . . . . . . 7 = (-g𝑊)
11 ncvsi.0 . . . . . . 7 0 = (0g𝑊)
121, 2, 10, 11ngpi 22631 . . . . . 6 (𝑊 ∈ NrmGrp → (𝑊 ∈ Grp ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
13 r19.26 3200 . . . . . . . . 9 (∀𝑥𝑉 ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) ↔ (∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
14 simpll 807 . . . . . . . . . . 11 (((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) → ((𝑁𝑥) = 0 ↔ 𝑥 = 0 ))
15 simplr 809 . . . . . . . . . . 11 (((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) → ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
16 simpr 479 . . . . . . . . . . 11 (((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) → ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))
1714, 15, 163jca 1123 . . . . . . . . . 10 (((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) → (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
1817ralimi 3088 . . . . . . . . 9 (∀𝑥𝑉 ((((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) → ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
1913, 18sylbir 225 . . . . . . . 8 ((∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) → ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
2019ex 449 . . . . . . 7 (∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))) → (∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)) → ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
21203ad2ant3 1130 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))) → (∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)) → ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
2212, 21syl 17 . . . . 5 (𝑊 ∈ NrmGrp → (∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)) → ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
2322imp 444 . . . 4 ((𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) → ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
24233adant1 1125 . . 3 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) → ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))))
257, 9, 243jca 1123 . 2 ((𝑊 ∈ ℂVec ∧ 𝑊 ∈ NrmGrp ∧ ∀𝑥𝑉𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥))) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
266, 25sylbi 207 1 (𝑊 ∈ (NrmVec ∩ ℂVec) → (𝑊 ∈ ℂVec ∧ 𝑁:𝑉⟶ℝ ∧ ∀𝑥𝑉 (((𝑁𝑥) = 0 ↔ 𝑥 = 0 ) ∧ ∀𝑦𝑉 (𝑁‘(𝑥 𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)) ∧ ∀𝑘𝐾 (𝑁‘(𝑘 · 𝑥)) = ((abs‘𝑘) · (𝑁𝑥)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1630   ∈ wcel 2137  ∀wral 3048   ∩ cin 3712   class class class wbr 4802  ⟶wf 6043  ‘cfv 6047  (class class class)co 6811  ℝcr 10125  0cc0 10126   + caddc 10129   · cmul 10131   ≤ cle 10265  abscabs 14171  Basecbs 16057  Scalarcsca 16144   ·𝑠 cvsca 16145  0gc0g 16300  Grpcgrp 17621  -gcsg 17623  normcnm 22580  NrmGrpcngp 22581  NrmVeccnvc 22585  ℂVecccvs 23121 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204  ax-addf 10205  ax-mulf 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-map 8023  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-sup 8511  df-inf 8512  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-5 11272  df-6 11273  df-7 11274  df-8 11275  df-9 11276  df-n0 11483  df-z 11568  df-dec 11684  df-uz 11878  df-q 11980  df-rp 12024  df-xneg 12137  df-xadd 12138  df-xmul 12139  df-ico 12372  df-fz 12518  df-seq 12994  df-exp 13053  df-cj 14036  df-re 14037  df-im 14038  df-sqrt 14172  df-abs 14173  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16154  df-mulr 16155  df-starv 16156  df-tset 16160  df-ple 16161  df-ds 16164  df-unif 16165  df-rest 16283  df-topn 16284  df-0g 16302  df-topgen 16304  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-grp 17624  df-minusg 17625  df-sbg 17626  df-subg 17790  df-cmn 18393  df-mgp 18688  df-ring 18747  df-cring 18748  df-subrg 18978  df-abv 19017  df-psmet 19938  df-xmet 19939  df-met 19940  df-bl 19941  df-mopn 19942  df-cnfld 19947  df-top 20899  df-topon 20916  df-topsp 20937  df-bases 20950  df-xms 22324  df-ms 22325  df-nm 22586  df-ngp 22587  df-nrg 22589  df-nlm 22590  df-nvc 22591  df-clm 23061  df-cvs 23122 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator