MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvsm1 Structured version   Visualization version   GIF version

Theorem ncvsm1 22948
Description: The norm of the negative of a vector. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvsprp.v 𝑉 = (Base‘𝑊)
ncvsprp.n 𝑁 = (norm‘𝑊)
ncvsprp.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
ncvsm1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁𝐴))

Proof of Theorem ncvsm1
StepHypRef Expression
1 simpl 473 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → 𝑊 ∈ (NrmVec ∩ ℂVec))
2 elin 3794 . . . . 5 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
3 id 22 . . . . . . 7 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
43cvsclm 22920 . . . . . 6 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
5 eqid 2621 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2621 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
75, 6clmneg1 22876 . . . . . 6 (𝑊 ∈ ℂMod → -1 ∈ (Base‘(Scalar‘𝑊)))
84, 7syl 17 . . . . 5 (𝑊 ∈ ℂVec → -1 ∈ (Base‘(Scalar‘𝑊)))
92, 8simplbiim 659 . . . 4 (𝑊 ∈ (NrmVec ∩ ℂVec) → -1 ∈ (Base‘(Scalar‘𝑊)))
109adantr 481 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → -1 ∈ (Base‘(Scalar‘𝑊)))
11 simpr 477 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → 𝐴𝑉)
12 ncvsprp.v . . . 4 𝑉 = (Base‘𝑊)
13 ncvsprp.n . . . 4 𝑁 = (norm‘𝑊)
14 ncvsprp.s . . . 4 · = ( ·𝑠𝑊)
1512, 13, 14, 5, 6ncvsprp 22946 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ -1 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = ((abs‘-1) · (𝑁𝐴)))
161, 10, 11, 15syl3anc 1325 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = ((abs‘-1) · (𝑁𝐴)))
17 ax-1cn 9991 . . . . . 6 1 ∈ ℂ
1817absnegi 14133 . . . . 5 (abs‘-1) = (abs‘1)
19 abs1 14031 . . . . 5 (abs‘1) = 1
2018, 19eqtri 2643 . . . 4 (abs‘-1) = 1
2120oveq1i 6657 . . 3 ((abs‘-1) · (𝑁𝐴)) = (1 · (𝑁𝐴))
22 nvcnlm 22494 . . . . . . . . 9 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
23 nlmngp 22475 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
2422, 23syl 17 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
2524adantr 481 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmGrp)
262, 25sylbi 207 . . . . . 6 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmGrp)
2712, 13nmcl 22414 . . . . . 6 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2826, 27sylan 488 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℝ)
2928recnd 10065 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁𝐴) ∈ ℂ)
3029mulid2d 10055 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (1 · (𝑁𝐴)) = (𝑁𝐴))
3121, 30syl5eq 2667 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → ((abs‘-1) · (𝑁𝐴)) = (𝑁𝐴))
3216, 31eqtrd 2655 1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉) → (𝑁‘(-1 · 𝐴)) = (𝑁𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1482  wcel 1989  cin 3571  cfv 5886  (class class class)co 6647  cr 9932  1c1 9934   · cmul 9938  -cneg 10264  abscabs 13968  Basecbs 15851  Scalarcsca 15938   ·𝑠 cvsca 15939  normcnm 22375  NrmGrpcngp 22376  NrmModcnlm 22379  NrmVeccnvc 22380  ℂModcclm 22856  ℂVecccvs 22917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011  ax-addf 10012  ax-mulf 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-sup 8345  df-inf 8346  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-q 11786  df-rp 11830  df-xneg 11943  df-xadd 11944  df-xmul 11945  df-fz 12324  df-seq 12797  df-exp 12856  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-starv 15950  df-tset 15954  df-ple 15955  df-ds 15958  df-unif 15959  df-0g 16096  df-topgen 16098  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-grp 17419  df-minusg 17420  df-mulg 17535  df-subg 17585  df-cmn 18189  df-mgp 18484  df-ur 18496  df-ring 18543  df-cring 18544  df-subrg 18772  df-psmet 19732  df-xmet 19733  df-met 19734  df-bl 19735  df-mopn 19736  df-cnfld 19741  df-top 20693  df-topon 20710  df-topsp 20731  df-bases 20744  df-xms 22119  df-ms 22120  df-nm 22381  df-ngp 22382  df-nlm 22385  df-nvc 22386  df-clm 22857  df-cvs 22918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator