MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvspi Structured version   Visualization version   GIF version

Theorem ncvspi 22864
Description: The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvsprp.v 𝑉 = (Base‘𝑊)
ncvsprp.n 𝑁 = (norm‘𝑊)
ncvsprp.s · = ( ·𝑠𝑊)
ncvsdif.p + = (+g𝑊)
ncvspi.f 𝐹 = (Scalar‘𝑊)
ncvspi.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
ncvspi ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) = (𝑁‘(𝐵 + (-i · 𝐴))))

Proof of Theorem ncvspi
StepHypRef Expression
1 elin 3774 . . . . . . 7 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
2 nvcnlm 22410 . . . . . . . . 9 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
3 nlmngp 22391 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
42, 3syl 17 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
54adantr 481 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmGrp)
61, 5sylbi 207 . . . . . 6 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmGrp)
763ad2ant1 1080 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ NrmGrp)
8 nvclmod 22412 . . . . . . . . . 10 (𝑊 ∈ NrmVec → 𝑊 ∈ LMod)
9 lmodgrp 18791 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
108, 9syl 17 . . . . . . . . 9 (𝑊 ∈ NrmVec → 𝑊 ∈ Grp)
1110adantr 481 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ Grp)
121, 11sylbi 207 . . . . . . 7 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ Grp)
13123ad2ant1 1080 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ Grp)
14 simp2l 1085 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝐴𝑉)
15 id 22 . . . . . . . . . 10 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
1615cvsclm 22834 . . . . . . . . 9 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
171, 16simplbiim 658 . . . . . . . 8 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ ℂMod)
18173ad2ant1 1080 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ ℂMod)
19 simp3 1061 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → i ∈ 𝐾)
20 simp2r 1086 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝐵𝑉)
21 ncvsprp.v . . . . . . . 8 𝑉 = (Base‘𝑊)
22 ncvspi.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
23 ncvsprp.s . . . . . . . 8 · = ( ·𝑠𝑊)
24 ncvspi.k . . . . . . . 8 𝐾 = (Base‘𝐹)
2521, 22, 23, 24clmvscl 22796 . . . . . . 7 ((𝑊 ∈ ℂMod ∧ i ∈ 𝐾𝐵𝑉) → (i · 𝐵) ∈ 𝑉)
2618, 19, 20, 25syl3anc 1323 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (i · 𝐵) ∈ 𝑉)
27 ncvsdif.p . . . . . . 7 + = (+g𝑊)
2821, 27grpcl 17351 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐴𝑉 ∧ (i · 𝐵) ∈ 𝑉) → (𝐴 + (i · 𝐵)) ∈ 𝑉)
2913, 14, 26, 28syl3anc 1323 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝐴 + (i · 𝐵)) ∈ 𝑉)
30 ncvsprp.n . . . . . 6 𝑁 = (norm‘𝑊)
3121, 30nmcl 22330 . . . . 5 ((𝑊 ∈ NrmGrp ∧ (𝐴 + (i · 𝐵)) ∈ 𝑉) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ ℝ)
327, 29, 31syl2anc 692 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ ℝ)
3332recnd 10012 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ ℂ)
3433mulid2d 10002 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (1 · (𝑁‘(𝐴 + (i · 𝐵)))) = (𝑁‘(𝐴 + (i · 𝐵))))
35 ax-icn 9939 . . . . . 6 i ∈ ℂ
3635absnegi 14073 . . . . 5 (abs‘-i) = (abs‘i)
37 absi 13960 . . . . 5 (abs‘i) = 1
3836, 37eqtri 2643 . . . 4 (abs‘-i) = 1
3938oveq1i 6614 . . 3 ((abs‘-i) · (𝑁‘(𝐴 + (i · 𝐵)))) = (1 · (𝑁‘(𝐴 + (i · 𝐵))))
40 simp1 1059 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ (NrmVec ∩ ℂVec))
4122, 24clmneg 22789 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) → -i = ((invg𝐹)‘i))
4216, 41sylan 488 . . . . . . . . . 10 ((𝑊 ∈ ℂVec ∧ i ∈ 𝐾) → -i = ((invg𝐹)‘i))
4322clmfgrp 22779 . . . . . . . . . . . 12 (𝑊 ∈ ℂMod → 𝐹 ∈ Grp)
4416, 43syl 17 . . . . . . . . . . 11 (𝑊 ∈ ℂVec → 𝐹 ∈ Grp)
45 eqid 2621 . . . . . . . . . . . 12 (invg𝐹) = (invg𝐹)
4624, 45grpinvcl 17388 . . . . . . . . . . 11 ((𝐹 ∈ Grp ∧ i ∈ 𝐾) → ((invg𝐹)‘i) ∈ 𝐾)
4744, 46sylan 488 . . . . . . . . . 10 ((𝑊 ∈ ℂVec ∧ i ∈ 𝐾) → ((invg𝐹)‘i) ∈ 𝐾)
4842, 47eqeltrd 2698 . . . . . . . . 9 ((𝑊 ∈ ℂVec ∧ i ∈ 𝐾) → -i ∈ 𝐾)
4948ex 450 . . . . . . . 8 (𝑊 ∈ ℂVec → (i ∈ 𝐾 → -i ∈ 𝐾))
501, 49simplbiim 658 . . . . . . 7 (𝑊 ∈ (NrmVec ∩ ℂVec) → (i ∈ 𝐾 → -i ∈ 𝐾))
5150imp 445 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ i ∈ 𝐾) → -i ∈ 𝐾)
52513adant2 1078 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → -i ∈ 𝐾)
5321, 30, 23, 22, 24ncvsprp 22860 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ -i ∈ 𝐾 ∧ (𝐴 + (i · 𝐵)) ∈ 𝑉) → (𝑁‘(-i · (𝐴 + (i · 𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴 + (i · 𝐵)))))
5440, 52, 29, 53syl3anc 1323 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(-i · (𝐴 + (i · 𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴 + (i · 𝐵)))))
5521, 22, 23, 24, 27clmvsdi 22800 . . . . . . 7 ((𝑊 ∈ ℂMod ∧ (-i ∈ 𝐾𝐴𝑉 ∧ (i · 𝐵) ∈ 𝑉)) → (-i · (𝐴 + (i · 𝐵))) = ((-i · 𝐴) + (-i · (i · 𝐵))))
5618, 52, 14, 26, 55syl13anc 1325 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (-i · (𝐴 + (i · 𝐵))) = ((-i · 𝐴) + (-i · (i · 𝐵))))
5735, 35mulneg1i 10420 . . . . . . . . . 10 (-i · i) = -(i · i)
58 ixi 10600 . . . . . . . . . . . 12 (i · i) = -1
5958negeqi 10218 . . . . . . . . . . 11 -(i · i) = --1
60 negneg1e1 11072 . . . . . . . . . . 11 --1 = 1
6159, 60eqtri 2643 . . . . . . . . . 10 -(i · i) = 1
6257, 61eqtri 2643 . . . . . . . . 9 (-i · i) = 1
6362oveq1i 6614 . . . . . . . 8 ((-i · i) · 𝐵) = (1 · 𝐵)
6421, 22, 23, 24clmvsass 22797 . . . . . . . . 9 ((𝑊 ∈ ℂMod ∧ (-i ∈ 𝐾 ∧ i ∈ 𝐾𝐵𝑉)) → ((-i · i) · 𝐵) = (-i · (i · 𝐵)))
6518, 52, 19, 20, 64syl13anc 1325 . . . . . . . 8 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → ((-i · i) · 𝐵) = (-i · (i · 𝐵)))
66 simpr 477 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
6717, 66anim12i 589 . . . . . . . . . 10 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉)) → (𝑊 ∈ ℂMod ∧ 𝐵𝑉))
68673adant3 1079 . . . . . . . . 9 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑊 ∈ ℂMod ∧ 𝐵𝑉))
6921, 23clmvs1 22801 . . . . . . . . 9 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (1 · 𝐵) = 𝐵)
7068, 69syl 17 . . . . . . . 8 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (1 · 𝐵) = 𝐵)
7163, 65, 703eqtr3a 2679 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (-i · (i · 𝐵)) = 𝐵)
7271oveq2d 6620 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → ((-i · 𝐴) + (-i · (i · 𝐵))) = ((-i · 𝐴) + 𝐵))
73 clmabl 22777 . . . . . . . . . 10 (𝑊 ∈ ℂMod → 𝑊 ∈ Abel)
7416, 73syl 17 . . . . . . . . 9 (𝑊 ∈ ℂVec → 𝑊 ∈ Abel)
751, 74simplbiim 658 . . . . . . . 8 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ Abel)
76753ad2ant1 1080 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ Abel)
7721, 22, 23, 24clmvscl 22796 . . . . . . . 8 ((𝑊 ∈ ℂMod ∧ -i ∈ 𝐾𝐴𝑉) → (-i · 𝐴) ∈ 𝑉)
7818, 52, 14, 77syl3anc 1323 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (-i · 𝐴) ∈ 𝑉)
7921, 27ablcom 18131 . . . . . . 7 ((𝑊 ∈ Abel ∧ (-i · 𝐴) ∈ 𝑉𝐵𝑉) → ((-i · 𝐴) + 𝐵) = (𝐵 + (-i · 𝐴)))
8076, 78, 20, 79syl3anc 1323 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → ((-i · 𝐴) + 𝐵) = (𝐵 + (-i · 𝐴)))
8156, 72, 803eqtrd 2659 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (-i · (𝐴 + (i · 𝐵))) = (𝐵 + (-i · 𝐴)))
8281fveq2d 6152 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(-i · (𝐴 + (i · 𝐵)))) = (𝑁‘(𝐵 + (-i · 𝐴))))
8354, 82eqtr3d 2657 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → ((abs‘-i) · (𝑁‘(𝐴 + (i · 𝐵)))) = (𝑁‘(𝐵 + (-i · 𝐴))))
8439, 83syl5eqr 2669 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (1 · (𝑁‘(𝐴 + (i · 𝐵)))) = (𝑁‘(𝐵 + (-i · 𝐴))))
8534, 84eqtr3d 2657 1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) = (𝑁‘(𝐵 + (-i · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  cin 3554  cfv 5847  (class class class)co 6604  cr 9879  1c1 9881  ici 9882   · cmul 9885  -cneg 10211  abscabs 13908  Basecbs 15781  +gcplusg 15862  Scalarcsca 15865   ·𝑠 cvsca 15866  Grpcgrp 17343  invgcminusg 17344  Abelcabl 18115  LModclmod 18784  normcnm 22291  NrmGrpcngp 22292  NrmModcnlm 22295  NrmVeccnvc 22296  ℂModcclm 22770  ℂVecccvs 22831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-0g 16023  df-topgen 16025  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-subg 17512  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-subrg 18699  df-lmod 18786  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-xms 22035  df-ms 22036  df-nm 22297  df-ngp 22298  df-nlm 22301  df-nvc 22302  df-clm 22771  df-cvs 22832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator