Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ndisj2 Structured version   Visualization version   GIF version

Theorem ndisj2 41306
Description: A non-disjointness condition. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
ndisj2.1 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
ndisj2 Disj 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ (𝐵𝐶) ≠ ∅))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem ndisj2
StepHypRef Expression
1 ndisj2.1 . . . 4 (𝑥 = 𝑦𝐵 = 𝐶)
21disjor 5038 . . 3 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ (𝐵𝐶) = ∅))
32notbii 322 . 2 Disj 𝑥𝐴 𝐵 ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ (𝐵𝐶) = ∅))
4 rexnal 3238 . 2 (∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝑥 = 𝑦 ∨ (𝐵𝐶) = ∅) ↔ ¬ ∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ (𝐵𝐶) = ∅))
5 rexnal 3238 . . . 4 (∃𝑦𝐴 ¬ (𝑥 = 𝑦 ∨ (𝐵𝐶) = ∅) ↔ ¬ ∀𝑦𝐴 (𝑥 = 𝑦 ∨ (𝐵𝐶) = ∅))
6 ioran 980 . . . . . 6 (¬ (𝑥 = 𝑦 ∨ (𝐵𝐶) = ∅) ↔ (¬ 𝑥 = 𝑦 ∧ ¬ (𝐵𝐶) = ∅))
7 df-ne 3017 . . . . . . 7 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
8 df-ne 3017 . . . . . . 7 ((𝐵𝐶) ≠ ∅ ↔ ¬ (𝐵𝐶) = ∅)
97, 8anbi12i 628 . . . . . 6 ((𝑥𝑦 ∧ (𝐵𝐶) ≠ ∅) ↔ (¬ 𝑥 = 𝑦 ∧ ¬ (𝐵𝐶) = ∅))
106, 9bitr4i 280 . . . . 5 (¬ (𝑥 = 𝑦 ∨ (𝐵𝐶) = ∅) ↔ (𝑥𝑦 ∧ (𝐵𝐶) ≠ ∅))
1110rexbii 3247 . . . 4 (∃𝑦𝐴 ¬ (𝑥 = 𝑦 ∨ (𝐵𝐶) = ∅) ↔ ∃𝑦𝐴 (𝑥𝑦 ∧ (𝐵𝐶) ≠ ∅))
125, 11bitr3i 279 . . 3 (¬ ∀𝑦𝐴 (𝑥 = 𝑦 ∨ (𝐵𝐶) = ∅) ↔ ∃𝑦𝐴 (𝑥𝑦 ∧ (𝐵𝐶) ≠ ∅))
1312rexbii 3247 . 2 (∃𝑥𝐴 ¬ ∀𝑦𝐴 (𝑥 = 𝑦 ∨ (𝐵𝐶) = ∅) ↔ ∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ (𝐵𝐶) ≠ ∅))
143, 4, 133bitr2i 301 1 Disj 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦𝐴 (𝑥𝑦 ∧ (𝐵𝐶) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1533  wne 3016  wral 3138  wrex 3139  cin 3934  c0 4290  Disj wdisj 5023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rmo 3146  df-v 3496  df-dif 3938  df-in 3942  df-nul 4291  df-disj 5024
This theorem is referenced by:  disjrnmpt2  41442
  Copyright terms: Public domain W3C validator