Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovrcl Structured version   Visualization version   GIF version

Theorem ndmovrcl 6862
 Description: Reverse closure law, when an operation's domain doesn't contain the empty set. (Contributed by NM, 3-Feb-1996.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmovrcl.3 ¬ ∅ ∈ 𝑆
Assertion
Ref Expression
ndmovrcl ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))

Proof of Theorem ndmovrcl
StepHypRef Expression
1 ndmovrcl.3 . . 3 ¬ ∅ ∈ 𝑆
2 ndmov.1 . . . . 5 dom 𝐹 = (𝑆 × 𝑆)
32ndmov 6860 . . . 4 (¬ (𝐴𝑆𝐵𝑆) → (𝐴𝐹𝐵) = ∅)
43eleq1d 2715 . . 3 (¬ (𝐴𝑆𝐵𝑆) → ((𝐴𝐹𝐵) ∈ 𝑆 ↔ ∅ ∈ 𝑆))
51, 4mtbiri 316 . 2 (¬ (𝐴𝑆𝐵𝑆) → ¬ (𝐴𝐹𝐵) ∈ 𝑆)
65con4i 113 1 ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∅c0 3948   × cxp 5141  dom cdm 5143  (class class class)co 6690 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-xp 5149  df-dm 5153  df-iota 5889  df-fv 5934  df-ov 6693 This theorem is referenced by:  ndmovass  6864  ndmovdistr  6865  ndmovord  6866  ndmovordi  6867  caovmo  6913  brecop2  7884  eceqoveq  7895  addcanpi  9759  mulcanpi  9760  ordpipq  9802  recmulnq  9824  recclnq  9826  ltexnq  9835  nsmallnq  9837  ltbtwnnq  9838  prlem934  9893  ltaddpr  9894  ltaddpr2  9895  ltexprlem2  9897  ltexprlem3  9898  ltexprlem4  9899  ltexprlem6  9901  ltexprlem7  9902  addcanpr  9906  prlem936  9907  mappsrpr  9967
 Copyright terms: Public domain W3C validator