MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndvdsadd Structured version   Visualization version   GIF version

Theorem ndvdsadd 15763
Description: Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 + 1, 𝑁 + 2... 𝑁 + (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdsadd ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾)))

Proof of Theorem ndvdsadd
StepHypRef Expression
1 nnre 11647 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
2 nnre 11647 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
3 posdif 11135 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐾 < 𝐷 ↔ 0 < (𝐷𝐾)))
41, 2, 3syl2anr 598 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐾 < 𝐷 ↔ 0 < (𝐷𝐾)))
54pm5.32i 577 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐾 < 𝐷) ↔ ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 0 < (𝐷𝐾)))
6 nnz 12007 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
7 nnz 12007 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
8 zsubcl 12027 . . . . . . . . 9 ((𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷𝐾) ∈ ℤ)
96, 7, 8syl2an 597 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷𝐾) ∈ ℤ)
10 elnnz 11994 . . . . . . . . 9 ((𝐷𝐾) ∈ ℕ ↔ ((𝐷𝐾) ∈ ℤ ∧ 0 < (𝐷𝐾)))
1110biimpri 230 . . . . . . . 8 (((𝐷𝐾) ∈ ℤ ∧ 0 < (𝐷𝐾)) → (𝐷𝐾) ∈ ℕ)
129, 11sylan 582 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 0 < (𝐷𝐾)) → (𝐷𝐾) ∈ ℕ)
135, 12sylbi 219 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐾 < 𝐷) → (𝐷𝐾) ∈ ℕ)
1413anasss 469 . . . . 5 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝐾) ∈ ℕ)
15 nngt0 11671 . . . . . . . 8 (𝐾 ∈ ℕ → 0 < 𝐾)
16 ltsubpos 11134 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (0 < 𝐾 ↔ (𝐷𝐾) < 𝐷))
171, 2, 16syl2an 597 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 < 𝐾 ↔ (𝐷𝐾) < 𝐷))
1817biimpd 231 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 < 𝐾 → (𝐷𝐾) < 𝐷))
1918expcom 416 . . . . . . . 8 (𝐷 ∈ ℕ → (𝐾 ∈ ℕ → (0 < 𝐾 → (𝐷𝐾) < 𝐷)))
2015, 19mpdi 45 . . . . . . 7 (𝐷 ∈ ℕ → (𝐾 ∈ ℕ → (𝐷𝐾) < 𝐷))
2120imp 409 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷𝐾) < 𝐷)
2221adantrr 715 . . . . 5 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝐾) < 𝐷)
2314, 22jca 514 . . . 4 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷))
24233adant1 1126 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷))
25 ndvdssub 15762 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
2624, 25syld3an3 1405 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
27 zaddcl 12025 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
287, 27sylan2 594 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑁 + 𝐾) ∈ ℤ)
29 dvdssubr 15657 . . . . . . . 8 ((𝐷 ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
306, 28, 29syl2an 597 . . . . . . 7 ((𝐷 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ)) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
3130an12s 647 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
32313impb 1111 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
33 zcn 11989 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
34 nncn 11648 . . . . . . 7 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
35 nncn 11648 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
36 subsub3 10920 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 − (𝐷𝐾)) = ((𝑁 + 𝐾) − 𝐷))
3733, 34, 35, 36syl3an 1156 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁 − (𝐷𝐾)) = ((𝑁 + 𝐾) − 𝐷))
3837breq2d 5080 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 − (𝐷𝐾)) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
3932, 38bitr4d 284 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
4039notbid 320 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (¬ 𝐷 ∥ (𝑁 + 𝐾) ↔ ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
41403adant3r 1177 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (¬ 𝐷 ∥ (𝑁 + 𝐾) ↔ ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
4226, 41sylibrd 261 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539   + caddc 10542   < clt 10677  cmin 10872  cn 11640  cz 11984  cdvds 15609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610
This theorem is referenced by:  ndvdsp1  15764  ndvdsi  15765
  Copyright terms: Public domain W3C validator