MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndvdsadd Structured version   Visualization version   GIF version

Theorem ndvdsadd 15181
Description: Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 + 1, 𝑁 + 2... 𝑁 + (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdsadd ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾)))

Proof of Theorem ndvdsadd
StepHypRef Expression
1 nnre 11065 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℝ)
2 nnre 11065 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ)
3 posdif 10559 . . . . . . . . 9 ((𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐾 < 𝐷 ↔ 0 < (𝐷𝐾)))
41, 2, 3syl2anr 494 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐾 < 𝐷 ↔ 0 < (𝐷𝐾)))
54pm5.32i 670 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐾 < 𝐷) ↔ ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 0 < (𝐷𝐾)))
6 nnz 11437 . . . . . . . . 9 (𝐷 ∈ ℕ → 𝐷 ∈ ℤ)
7 nnz 11437 . . . . . . . . 9 (𝐾 ∈ ℕ → 𝐾 ∈ ℤ)
8 zsubcl 11457 . . . . . . . . 9 ((𝐷 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷𝐾) ∈ ℤ)
96, 7, 8syl2an 493 . . . . . . . 8 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷𝐾) ∈ ℤ)
10 elnnz 11425 . . . . . . . . 9 ((𝐷𝐾) ∈ ℕ ↔ ((𝐷𝐾) ∈ ℤ ∧ 0 < (𝐷𝐾)))
1110biimpri 218 . . . . . . . 8 (((𝐷𝐾) ∈ ℤ ∧ 0 < (𝐷𝐾)) → (𝐷𝐾) ∈ ℕ)
129, 11sylan 487 . . . . . . 7 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 0 < (𝐷𝐾)) → (𝐷𝐾) ∈ ℕ)
135, 12sylbi 207 . . . . . 6 (((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) ∧ 𝐾 < 𝐷) → (𝐷𝐾) ∈ ℕ)
1413anasss 680 . . . . 5 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝐾) ∈ ℕ)
15 nngt0 11087 . . . . . . . 8 (𝐾 ∈ ℕ → 0 < 𝐾)
16 ltsubpos 10558 . . . . . . . . . . 11 ((𝐾 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (0 < 𝐾 ↔ (𝐷𝐾) < 𝐷))
171, 2, 16syl2an 493 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 < 𝐾 ↔ (𝐷𝐾) < 𝐷))
1817biimpd 219 . . . . . . . . 9 ((𝐾 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (0 < 𝐾 → (𝐷𝐾) < 𝐷))
1918expcom 450 . . . . . . . 8 (𝐷 ∈ ℕ → (𝐾 ∈ ℕ → (0 < 𝐾 → (𝐷𝐾) < 𝐷)))
2015, 19mpdi 45 . . . . . . 7 (𝐷 ∈ ℕ → (𝐾 ∈ ℕ → (𝐷𝐾) < 𝐷))
2120imp 444 . . . . . 6 ((𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷𝐾) < 𝐷)
2221adantrr 753 . . . . 5 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝐾) < 𝐷)
2314, 22jca 553 . . . 4 ((𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷))
24233adant1 1099 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷))
25 ndvdssub 15180 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ ((𝐷𝐾) ∈ ℕ ∧ (𝐷𝐾) < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
2624, 25syld3an3 1411 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
27 zaddcl 11455 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
287, 27sylan2 490 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ) → (𝑁 + 𝐾) ∈ ℤ)
29 dvdssubr 15074 . . . . . . . 8 ((𝐷 ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
306, 28, 29syl2an 493 . . . . . . 7 ((𝐷 ∈ ℕ ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℕ)) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
3130an12s 860 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
32313impb 1279 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
33 zcn 11420 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
34 nncn 11066 . . . . . . 7 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
35 nncn 11066 . . . . . . 7 (𝐾 ∈ ℕ → 𝐾 ∈ ℂ)
36 subsub3 10351 . . . . . . 7 ((𝑁 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑁 − (𝐷𝐾)) = ((𝑁 + 𝐾) − 𝐷))
3733, 34, 35, 36syl3an 1408 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝑁 − (𝐷𝐾)) = ((𝑁 + 𝐾) − 𝐷))
3837breq2d 4697 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 − (𝐷𝐾)) ↔ 𝐷 ∥ ((𝑁 + 𝐾) − 𝐷)))
3932, 38bitr4d 271 . . . 4 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (𝐷 ∥ (𝑁 + 𝐾) ↔ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
4039notbid 307 . . 3 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝐾 ∈ ℕ) → (¬ 𝐷 ∥ (𝑁 + 𝐾) ↔ ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
41403adant3r 1363 . 2 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (¬ 𝐷 ∥ (𝑁 + 𝐾) ↔ ¬ 𝐷 ∥ (𝑁 − (𝐷𝐾))))
4226, 41sylibrd 249 1 ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974   + caddc 9977   < clt 10112  cmin 10304  cn 11058  cz 11415  cdvds 15027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028
This theorem is referenced by:  ndvdsp1  15182  ndvdsi  15183
  Copyright terms: Public domain W3C validator