![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ne0d | Structured version Visualization version GIF version |
Description: If a set has elements, then it is not empty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
ne0d.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
Ref | Expression |
---|---|
ne0d | ⊢ (𝜑 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0d.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
2 | ne0i 3954 | . 2 ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2030 ≠ wne 2823 ∅c0 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-v 3233 df-dif 3610 df-nul 3949 |
This theorem is referenced by: uzn0d 39965 uzublem 39970 climinf2lem 40256 cnrefiisplem 40373 smfsuplem1 41338 smfsuplem3 41340 |
Copyright terms: Public domain | W3C validator |