MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negeu Structured version   Visualization version   GIF version

Theorem negeu 10118
Description: Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
negeu ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem negeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnegex 10064 . . 3 (𝐴 ∈ ℂ → ∃𝑦 ∈ ℂ (𝐴 + 𝑦) = 0)
21adantr 479 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℂ (𝐴 + 𝑦) = 0)
3 simpl 471 . . . 4 ((𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0) → 𝑦 ∈ ℂ)
4 simpr 475 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
5 addcl 9870 . . . 4 ((𝑦 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝑦 + 𝐵) ∈ ℂ)
63, 4, 5syl2anr 493 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → (𝑦 + 𝐵) ∈ ℂ)
7 simplrr 796 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → (𝐴 + 𝑦) = 0)
87oveq1d 6538 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑦) + 𝐵) = (0 + 𝐵))
9 simplll 793 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
10 simplrl 795 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝑦 ∈ ℂ)
11 simpllr 794 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
129, 10, 11addassd 9914 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑦) + 𝐵) = (𝐴 + (𝑦 + 𝐵)))
1311addid2d 10084 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → (0 + 𝐵) = 𝐵)
148, 12, 133eqtr3rd 2648 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝐵 = (𝐴 + (𝑦 + 𝐵)))
1514eqeq2d 2615 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 𝐵 ↔ (𝐴 + 𝑥) = (𝐴 + (𝑦 + 𝐵))))
16 simpr 475 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
1710, 11addcld 9911 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → (𝑦 + 𝐵) ∈ ℂ)
189, 16, 17addcand 10086 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = (𝐴 + (𝑦 + 𝐵)) ↔ 𝑥 = (𝑦 + 𝐵)))
1915, 18bitrd 266 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 𝐵𝑥 = (𝑦 + 𝐵)))
2019ralrimiva 2944 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → ∀𝑥 ∈ ℂ ((𝐴 + 𝑥) = 𝐵𝑥 = (𝑦 + 𝐵)))
21 reu6i 3359 . . 3 (((𝑦 + 𝐵) ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((𝐴 + 𝑥) = 𝐵𝑥 = (𝑦 + 𝐵))) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
226, 20, 21syl2anc 690 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
232, 22rexlimddv 3012 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  wral 2891  wrex 2892  ∃!wreu 2893  (class class class)co 6523  cc 9786  0cc0 9788   + caddc 9791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-po 4945  df-so 4946  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-ov 6526  df-er 7602  df-en 7815  df-dom 7816  df-sdom 7817  df-pnf 9928  df-mnf 9929  df-ltxr 9931
This theorem is referenced by:  subcl  10127  subadd  10131
  Copyright terms: Public domain W3C validator