MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negf1o Structured version   Visualization version   GIF version

Theorem negf1o 10420
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
negf1o.1 𝐹 = (𝑥𝐴 ↦ -𝑥)
Assertion
Ref Expression
negf1o (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
Distinct variable group:   𝐴,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem negf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 negf1o.1 . . 3 𝐹 = (𝑥𝐴 ↦ -𝑥)
2 ssel 3582 . . . . . 6 (𝐴 ⊆ ℝ → (𝑥𝐴𝑥 ∈ ℝ))
3 renegcl 10304 . . . . . 6 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
42, 3syl6 35 . . . . 5 (𝐴 ⊆ ℝ → (𝑥𝐴 → -𝑥 ∈ ℝ))
54imp 445 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → -𝑥 ∈ ℝ)
62imp 445 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
7 recn 9986 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
8 negneg 10291 . . . . . . . . . 10 (𝑥 ∈ ℂ → --𝑥 = 𝑥)
98eqcomd 2627 . . . . . . . . 9 (𝑥 ∈ ℂ → 𝑥 = --𝑥)
107, 9syl 17 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 = --𝑥)
1110eleq1d 2683 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥𝐴 ↔ --𝑥𝐴))
1211biimpcd 239 . . . . . 6 (𝑥𝐴 → (𝑥 ∈ ℝ → --𝑥𝐴))
1312adantl 482 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (𝑥 ∈ ℝ → --𝑥𝐴))
146, 13mpd 15 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → --𝑥𝐴)
15 negeq 10233 . . . . . 6 (𝑛 = -𝑥 → -𝑛 = --𝑥)
1615eleq1d 2683 . . . . 5 (𝑛 = -𝑥 → (-𝑛𝐴 ↔ --𝑥𝐴))
1716elrab 3351 . . . 4 (-𝑥 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↔ (-𝑥 ∈ ℝ ∧ --𝑥𝐴))
185, 14, 17sylanbrc 697 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → -𝑥 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴})
19 negeq 10233 . . . . . . 7 (𝑛 = 𝑦 → -𝑛 = -𝑦)
2019eleq1d 2683 . . . . . 6 (𝑛 = 𝑦 → (-𝑛𝐴 ↔ -𝑦𝐴))
2120elrab 3351 . . . . 5 (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↔ (𝑦 ∈ ℝ ∧ -𝑦𝐴))
22 simpr 477 . . . . . 6 ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → -𝑦𝐴)
2322a1i 11 . . . . 5 (𝐴 ⊆ ℝ → ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → -𝑦𝐴))
2421, 23syl5bi 232 . . . 4 (𝐴 ⊆ ℝ → (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} → -𝑦𝐴))
2524imp 445 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴}) → -𝑦𝐴)
262, 7syl6com 37 . . . . . . . . . 10 (𝑥𝐴 → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ))
2726adantl 482 . . . . . . . . 9 (((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ))
2827imp 445 . . . . . . . 8 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑥 ∈ ℂ)
29 recn 9986 . . . . . . . . 9 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
3029ad3antrrr 765 . . . . . . . 8 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑦 ∈ ℂ)
31 negcon2 10294 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
3228, 30, 31syl2anc 692 . . . . . . 7 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
3332exp31 629 . . . . . 6 ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → (𝑥𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥))))
3421, 33sylbi 207 . . . . 5 (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} → (𝑥𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥))))
3534impcom 446 . . . 4 ((𝑥𝐴𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴}) → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥)))
3635impcom 446 . . 3 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴})) → (𝑥 = -𝑦𝑦 = -𝑥))
371, 18, 25, 36f1ocnv2d 6851 . 2 (𝐴 ⊆ ℝ → (𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴} ∧ 𝐹 = (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↦ -𝑦)))
3837simpld 475 1 (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  {crab 2912  wss 3560  cmpt 4683  ccnv 5083  1-1-ontowf1o 5856  cc 9894  cr 9895  -cneg 10227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-ltxr 10039  df-sub 10228  df-neg 10229
This theorem is referenced by:  negfi  10931
  Copyright terms: Public domain W3C validator