MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negf1o Structured version   Visualization version   GIF version

Theorem negf1o 11069
Description: Negation is an isomorphism of a subset of the real numbers to the negated elements of the subset. (Contributed by AV, 9-Aug-2020.)
Hypothesis
Ref Expression
negf1o.1 𝐹 = (𝑥𝐴 ↦ -𝑥)
Assertion
Ref Expression
negf1o (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
Distinct variable group:   𝐴,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem negf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 negf1o.1 . 2 𝐹 = (𝑥𝐴 ↦ -𝑥)
2 negeq 10877 . . . 4 (𝑛 = -𝑥 → -𝑛 = --𝑥)
32eleq1d 2897 . . 3 (𝑛 = -𝑥 → (-𝑛𝐴 ↔ --𝑥𝐴))
4 ssel 3960 . . . . 5 (𝐴 ⊆ ℝ → (𝑥𝐴𝑥 ∈ ℝ))
5 renegcl 10948 . . . . 5 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
64, 5syl6 35 . . . 4 (𝐴 ⊆ ℝ → (𝑥𝐴 → -𝑥 ∈ ℝ))
76imp 409 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → -𝑥 ∈ ℝ)
84imp 409 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
9 recn 10626 . . . . . . . 8 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
10 negneg 10935 . . . . . . . . 9 (𝑥 ∈ ℂ → --𝑥 = 𝑥)
1110eqcomd 2827 . . . . . . . 8 (𝑥 ∈ ℂ → 𝑥 = --𝑥)
129, 11syl 17 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 = --𝑥)
1312eleq1d 2897 . . . . . 6 (𝑥 ∈ ℝ → (𝑥𝐴 ↔ --𝑥𝐴))
1413biimpcd 251 . . . . 5 (𝑥𝐴 → (𝑥 ∈ ℝ → --𝑥𝐴))
1514adantl 484 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (𝑥 ∈ ℝ → --𝑥𝐴))
168, 15mpd 15 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → --𝑥𝐴)
173, 7, 16elrabd 3681 . 2 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → -𝑥 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴})
18 negeq 10877 . . . . . 6 (𝑛 = 𝑦 → -𝑛 = -𝑦)
1918eleq1d 2897 . . . . 5 (𝑛 = 𝑦 → (-𝑛𝐴 ↔ -𝑦𝐴))
2019elrab 3679 . . . 4 (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} ↔ (𝑦 ∈ ℝ ∧ -𝑦𝐴))
21 simpr 487 . . . . 5 ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → -𝑦𝐴)
2221a1i 11 . . . 4 (𝐴 ⊆ ℝ → ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → -𝑦𝐴))
2320, 22syl5bi 244 . . 3 (𝐴 ⊆ ℝ → (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} → -𝑦𝐴))
2423imp 409 . 2 ((𝐴 ⊆ ℝ ∧ 𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴}) → -𝑦𝐴)
254, 9syl6com 37 . . . . . . . . 9 (𝑥𝐴 → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ))
2625adantl 484 . . . . . . . 8 (((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) → (𝐴 ⊆ ℝ → 𝑥 ∈ ℂ))
2726imp 409 . . . . . . 7 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑥 ∈ ℂ)
28 recn 10626 . . . . . . . 8 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
2928ad3antrrr 728 . . . . . . 7 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → 𝑦 ∈ ℂ)
30 negcon2 10938 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 = -𝑦𝑦 = -𝑥))
3127, 29, 30syl2anc 586 . . . . . 6 ((((𝑦 ∈ ℝ ∧ -𝑦𝐴) ∧ 𝑥𝐴) ∧ 𝐴 ⊆ ℝ) → (𝑥 = -𝑦𝑦 = -𝑥))
3231exp31 422 . . . . 5 ((𝑦 ∈ ℝ ∧ -𝑦𝐴) → (𝑥𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥))))
3320, 32sylbi 219 . . . 4 (𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴} → (𝑥𝐴 → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥))))
3433impcom 410 . . 3 ((𝑥𝐴𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴}) → (𝐴 ⊆ ℝ → (𝑥 = -𝑦𝑦 = -𝑥)))
3534impcom 410 . 2 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦 ∈ {𝑛 ∈ ℝ ∣ -𝑛𝐴})) → (𝑥 = -𝑦𝑦 = -𝑥))
361, 17, 24, 35f1o2d 7398 1 (𝐴 ⊆ ℝ → 𝐹:𝐴1-1-onto→{𝑛 ∈ ℝ ∣ -𝑛𝐴})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {crab 3142  wss 3935  cmpt 5145  1-1-ontowf1o 6353  cc 10534  cr 10535  -cneg 10870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-ltxr 10679  df-sub 10871  df-neg 10872
This theorem is referenced by:  negfi  11588
  Copyright terms: Public domain W3C validator