MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negidd Structured version   Visualization version   GIF version

Theorem negidd 10570
Description: Addition of a number and its negative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
negidd (𝜑 → (𝐴 + -𝐴) = 0)

Proof of Theorem negidd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 negid 10516 . 2 (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0)
31, 2syl 17 1 (𝜑 → (𝐴 + -𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1628  wcel 2135  (class class class)co 6809  cc 10122  0cc0 10124   + caddc 10127  -cneg 10455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-br 4801  df-opab 4861  df-mpt 4878  df-id 5170  df-po 5183  df-so 5184  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-pnf 10264  df-mnf 10265  df-ltxr 10267  df-sub 10456  df-neg 10457
This theorem is referenced by:  xnegid  12258  xpncan  12270  moddvds  15189  pwp1fsum  15312  bitsres  15393  pcadd2  15792  zaddablx  18471  zringinvg  20033  ditgsplit  23820  dvferm2lem  23944  vieta1  24262  geolim3  24289  ulmshft  24339  cxpneg  24622  dcubic1lem  24765  lgamgulmlem1  24950  archiabllem2c  30054  signsply0  30933  knoppndvlem14  32818  poimir  33751  itgaddnclem2  33778  pellexlem6  37896  pellfund14  37960  binomcxplemnotnn0  39053  reclimc  40384  stoweidlem13  40729  stirlinglem5  40794  etransclem46  40996  2zrngagrp  42449  altgsumbcALT  42637
  Copyright terms: Public domain W3C validator