Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neglimc Structured version   Visualization version   GIF version

Theorem neglimc 39283
Description: Limit of the negative function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
neglimc.f 𝐹 = (𝑥𝐴𝐵)
neglimc.g 𝐺 = (𝑥𝐴 ↦ -𝐵)
neglimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
neglimc.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
Assertion
Ref Expression
neglimc (𝜑 → -𝐶 ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem neglimc
Dummy variables 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 23545 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 neglimc.c . . . 4 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
31, 2sseldi 3581 . . 3 (𝜑𝐶 ∈ ℂ)
43negcld 10323 . 2 (𝜑 → -𝐶 ∈ ℂ)
5 neglimc.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 neglimc.f . . . . . . . . 9 𝐹 = (𝑥𝐴𝐵)
75, 6fmptd 6340 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
86, 5, 2limcmptdm 39271 . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
9 limcrcl 23544 . . . . . . . . . 10 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
102, 9syl 17 . . . . . . . . 9 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1110simp3d 1073 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
127, 8, 11ellimc3 23549 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))))
132, 12mpbid 222 . . . . . 6 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)))
1413simprd 479 . . . . 5 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
1514r19.21bi 2927 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
16 simplll 797 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) → 𝜑)
17163ad2ant1 1080 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → 𝜑)
18 simp1r 1084 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → 𝑣𝐴)
19 simp3 1061 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤))
20 simp2 1060 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
2119, 20mpd 15 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)
22 nfv 1840 . . . . . . . . . . . . . . . 16 𝑥(𝜑𝑣𝐴)
23 neglimc.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥𝐴 ↦ -𝐵)
24 nfmpt1 4707 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐴 ↦ -𝐵)
2523, 24nfcxfr 2759 . . . . . . . . . . . . . . . . . 18 𝑥𝐺
26 nfcv 2761 . . . . . . . . . . . . . . . . . 18 𝑥𝑣
2725, 26nffv 6155 . . . . . . . . . . . . . . . . 17 𝑥(𝐺𝑣)
28 nfmpt1 4707 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥𝐴𝐵)
296, 28nfcxfr 2759 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
3029, 26nffv 6155 . . . . . . . . . . . . . . . . . 18 𝑥(𝐹𝑣)
3130nfneg 10221 . . . . . . . . . . . . . . . . 17 𝑥-(𝐹𝑣)
3227, 31nfeq 2772 . . . . . . . . . . . . . . . 16 𝑥(𝐺𝑣) = -(𝐹𝑣)
3322, 32nfim 1822 . . . . . . . . . . . . . . 15 𝑥((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))
34 eleq1 2686 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (𝑥𝐴𝑣𝐴))
3534anbi2d 739 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → ((𝜑𝑥𝐴) ↔ (𝜑𝑣𝐴)))
36 fveq2 6148 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (𝐺𝑥) = (𝐺𝑣))
37 fveq2 6148 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
3837negeqd 10219 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → -(𝐹𝑥) = -(𝐹𝑣))
3936, 38eqeq12d 2636 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → ((𝐺𝑥) = -(𝐹𝑥) ↔ (𝐺𝑣) = -(𝐹𝑣)))
4035, 39imbi12d 334 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (((𝜑𝑥𝐴) → (𝐺𝑥) = -(𝐹𝑥)) ↔ ((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))))
41 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝑥𝐴)
425negcld 10323 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
4323fvmpt2 6248 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴 ∧ -𝐵 ∈ ℂ) → (𝐺𝑥) = -𝐵)
4441, 42, 43syl2anc 692 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐺𝑥) = -𝐵)
456fvmpt2 6248 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴𝐵 ∈ ℂ) → (𝐹𝑥) = 𝐵)
4641, 5, 45syl2anc 692 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
4746negeqd 10219 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → -(𝐹𝑥) = -𝐵)
4844, 47eqtr4d 2658 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (𝐺𝑥) = -(𝐹𝑥))
4933, 40, 48chvar 2261 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))
5049oveq1d 6619 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → ((𝐺𝑣) − -𝐶) = (-(𝐹𝑣) − -𝐶))
517ffvelrnda 6315 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ ℂ)
523adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → 𝐶 ∈ ℂ)
5351, 52negsubdi3d 38970 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → -((𝐹𝑣) − 𝐶) = (-(𝐹𝑣) − -𝐶))
5450, 53eqtr4d 2658 . . . . . . . . . . . 12 ((𝜑𝑣𝐴) → ((𝐺𝑣) − -𝐶) = -((𝐹𝑣) − 𝐶))
5554fveq2d 6152 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘-((𝐹𝑣) − 𝐶)))
5651, 52subcld 10336 . . . . . . . . . . . 12 ((𝜑𝑣𝐴) → ((𝐹𝑣) − 𝐶) ∈ ℂ)
5756absnegd 14122 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → (abs‘-((𝐹𝑣) − 𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
5855, 57eqtrd 2655 . . . . . . . . . 10 ((𝜑𝑣𝐴) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
5958adantr 481 . . . . . . . . 9 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
60 simpr 477 . . . . . . . . 9 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)
6159, 60eqbrtrd 4635 . . . . . . . 8 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)
6217, 18, 21, 61syl21anc 1322 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)
63623exp 1261 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6463ralimdva 2956 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6564reximdva 3011 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6615, 65mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))
6766ralrimiva 2960 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))
6842, 23fmptd 6340 . . 3 (𝜑𝐺:𝐴⟶ℂ)
6968, 8, 11ellimc3 23549 . 2 (𝜑 → (-𝐶 ∈ (𝐺 lim 𝐷) ↔ (-𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))))
704, 67, 69mpbir2and 956 1 (𝜑 → -𝐶 ∈ (𝐺 lim 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  wrex 2908  wss 3555   class class class wbr 4613  cmpt 4673  dom cdm 5074  wf 5843  cfv 5847  (class class class)co 6604  cc 9878   < clt 10018  cmin 10210  -cneg 10211  +crp 11776  abscabs 13908   lim climc 23532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-topn 16005  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cnp 20942  df-xms 22035  df-ms 22036  df-limc 23536
This theorem is referenced by:  sublimc  39288  reclimc  39289
  Copyright terms: Public domain W3C validator