MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negmod Structured version   Visualization version   GIF version

Theorem negmod 12658
Description: The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by AV, 5-Jul-2020.)
Assertion
Ref Expression
negmod ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-𝐴 mod 𝑁) = ((𝑁𝐴) mod 𝑁))

Proof of Theorem negmod
StepHypRef Expression
1 rpcn 11788 . . . . 5 (𝑁 ∈ ℝ+𝑁 ∈ ℂ)
2 recn 9973 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 negsub 10276 . . . . 5 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 + -𝐴) = (𝑁𝐴))
41, 2, 3syl2anr 495 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑁 + -𝐴) = (𝑁𝐴))
54eqcomd 2627 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑁𝐴) = (𝑁 + -𝐴))
65oveq1d 6622 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝑁𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁))
71mulid2d 10005 . . . . 5 (𝑁 ∈ ℝ+ → (1 · 𝑁) = 𝑁)
87adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (1 · 𝑁) = 𝑁)
98oveq1d 6622 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((1 · 𝑁) + -𝐴) = (𝑁 + -𝐴))
109oveq1d 6622 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((𝑁 + -𝐴) mod 𝑁))
11 1cnd 10003 . . . . . 6 (𝐴 ∈ ℝ → 1 ∈ ℂ)
12 mulcl 9967 . . . . . 6 ((1 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (1 · 𝑁) ∈ ℂ)
1311, 1, 12syl2an 494 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (1 · 𝑁) ∈ ℂ)
14 renegcl 10291 . . . . . . 7 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
1514recnd 10015 . . . . . 6 (𝐴 ∈ ℝ → -𝐴 ∈ ℂ)
1615adantr 481 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → -𝐴 ∈ ℂ)
1713, 16addcomd 10185 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((1 · 𝑁) + -𝐴) = (-𝐴 + (1 · 𝑁)))
1817oveq1d 6622 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((1 · 𝑁) + -𝐴) mod 𝑁) = ((-𝐴 + (1 · 𝑁)) mod 𝑁))
1914adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → -𝐴 ∈ ℝ)
20 simpr 477 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 𝑁 ∈ ℝ+)
21 1zzd 11355 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 1 ∈ ℤ)
22 modcyc 12648 . . . 4 ((-𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁))
2319, 20, 21, 22syl3anc 1323 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((-𝐴 + (1 · 𝑁)) mod 𝑁) = (-𝐴 mod 𝑁))
2418, 23eqtrd 2655 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((1 · 𝑁) + -𝐴) mod 𝑁) = (-𝐴 mod 𝑁))
256, 10, 243eqtr2rd 2662 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (-𝐴 mod 𝑁) = ((𝑁𝐴) mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  (class class class)co 6607  cc 9881  cr 9882  1c1 9884   + caddc 9886   · cmul 9888  cmin 10213  -cneg 10214  cz 11324  +crp 11779   mod cmo 12611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-sup 8295  df-inf 8296  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-fl 12536  df-mod 12612
This theorem is referenced by:  m1modnnsub1  12659  gausslemma2dlem5a  25002
  Copyright terms: Public domain W3C validator