MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negmod0 Structured version   Visualization version   GIF version

Theorem negmod0 13234
Description: 𝐴 is divisible by 𝐵 iff its negative is. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.)
Assertion
Ref Expression
negmod0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (-𝐴 mod 𝐵) = 0))

Proof of Theorem negmod0
StepHypRef Expression
1 rerpdivcl 12407 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
2 recn 10615 . . . 4 ((𝐴 / 𝐵) ∈ ℝ → (𝐴 / 𝐵) ∈ ℂ)
3 znegclb 12007 . . . 4 ((𝐴 / 𝐵) ∈ ℂ → ((𝐴 / 𝐵) ∈ ℤ ↔ -(𝐴 / 𝐵) ∈ ℤ))
41, 2, 33syl 18 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ∈ ℤ ↔ -(𝐴 / 𝐵) ∈ ℤ))
5 recn 10615 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
65adantr 481 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
7 rpcn 12387 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
87adantl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℂ)
9 rpne0 12393 . . . . . 6 (𝐵 ∈ ℝ+𝐵 ≠ 0)
109adantl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ≠ 0)
116, 8, 10divnegd 11417 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))
1211eleq1d 2894 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (-(𝐴 / 𝐵) ∈ ℤ ↔ (-𝐴 / 𝐵) ∈ ℤ))
134, 12bitrd 280 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ∈ ℤ ↔ (-𝐴 / 𝐵) ∈ ℤ))
14 mod0 13232 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 / 𝐵) ∈ ℤ))
15 renegcl 10937 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
16 mod0 13232 . . 3 ((-𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((-𝐴 mod 𝐵) = 0 ↔ (-𝐴 / 𝐵) ∈ ℤ))
1715, 16sylan 580 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((-𝐴 mod 𝐵) = 0 ↔ (-𝐴 / 𝐵) ∈ ℤ))
1813, 14, 173bitr4d 312 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (-𝐴 mod 𝐵) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  -cneg 10859   / cdiv 11285  cz 11969  +crp 12377   mod cmo 13225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13150  df-mod 13226
This theorem is referenced by:  absmod0  14651  gausslemma2dlem0i  25867
  Copyright terms: Public domain W3C validator