MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negn0 Structured version   Visualization version   GIF version

Theorem negn0 11063
Description: The image under negation of a nonempty set of reals is nonempty. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
negn0 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅)
Distinct variable group:   𝑧,𝐴

Proof of Theorem negn0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 4310 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 ssel 3961 . . . . . . 7 (𝐴 ⊆ ℝ → (𝑥𝐴𝑥 ∈ ℝ))
3 renegcl 10943 . . . . . . . . . 10 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
4 negeq 10872 . . . . . . . . . . . 12 (𝑧 = -𝑥 → -𝑧 = --𝑥)
54eleq1d 2897 . . . . . . . . . . 11 (𝑧 = -𝑥 → (-𝑧𝐴 ↔ --𝑥𝐴))
65elrab3 3681 . . . . . . . . . 10 (-𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
73, 6syl 17 . . . . . . . . 9 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ --𝑥𝐴))
8 recn 10621 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
98negnegd 10982 . . . . . . . . . 10 (𝑥 ∈ ℝ → --𝑥 = 𝑥)
109eleq1d 2897 . . . . . . . . 9 (𝑥 ∈ ℝ → (--𝑥𝐴𝑥𝐴))
117, 10bitrd 281 . . . . . . . 8 (𝑥 ∈ ℝ → (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} ↔ 𝑥𝐴))
1211biimprd 250 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
132, 12syli 39 . . . . . 6 (𝐴 ⊆ ℝ → (𝑥𝐴 → -𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
14 elex2 3517 . . . . . 6 (-𝑥 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴} → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
1513, 14syl6 35 . . . . 5 (𝐴 ⊆ ℝ → (𝑥𝐴 → ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴}))
16 n0 4310 . . . . 5 ({𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅ ↔ ∃𝑦 𝑦 ∈ {𝑧 ∈ ℝ ∣ -𝑧𝐴})
1715, 16syl6ibr 254 . . . 4 (𝐴 ⊆ ℝ → (𝑥𝐴 → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅))
1817exlimdv 1930 . . 3 (𝐴 ⊆ ℝ → (∃𝑥 𝑥𝐴 → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅))
191, 18syl5bi 244 . 2 (𝐴 ⊆ ℝ → (𝐴 ≠ ∅ → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅))
2019imp 409 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → {𝑧 ∈ ℝ ∣ -𝑧𝐴} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wne 3016  {crab 3142  wss 3936  c0 4291  cr 10530  -cneg 10865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-po 5469  df-so 5470  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-ltxr 10674  df-sub 10866  df-neg 10867
This theorem is referenced by:  fiminreOLD  11584  supminf  12329  supminfxr  41732
  Copyright terms: Public domain W3C validator