Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop2 Structured version   Visualization version   GIF version

Theorem neibastop2 33606
Description: In the topology generated by a neighborhood base, a set is a neighborhood of a point iff it contains a subset in the base. (Contributed by Jeff Hankins, 9-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
neibastop1.1 (𝜑𝑋𝑉)
neibastop1.2 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
neibastop1.3 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
neibastop1.4 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
neibastop1.5 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
neibastop1.6 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
Assertion
Ref Expression
neibastop2 ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
Distinct variable groups:   𝑣,𝑡,𝑦,𝑥   𝑣,𝐽   𝑥,𝑦,𝐽   𝑡,𝑜,𝑣,𝑤,𝑥,𝑦,𝑃   𝑜,𝑁,𝑡,𝑣,𝑤,𝑥,𝑦   𝑜,𝐹,𝑡,𝑣,𝑤,𝑥,𝑦   𝜑,𝑜,𝑡,𝑣,𝑤,𝑥,𝑦   𝑜,𝑋,𝑡,𝑣,𝑤,𝑥,𝑦
Allowed substitution hints:   𝐽(𝑤,𝑡,𝑜)   𝑉(𝑥,𝑦,𝑤,𝑣,𝑡,𝑜)

Proof of Theorem neibastop2
Dummy variables 𝑓 𝑛 𝑧 𝑠 𝑢 𝑎 𝑏 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neibastop1.1 . . . . . . . . 9 (𝜑𝑋𝑉)
2 neibastop1.2 . . . . . . . . 9 (𝜑𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
3 neibastop1.3 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
4 neibastop1.4 . . . . . . . . 9 𝐽 = {𝑜 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅}
51, 2, 3, 4neibastop1 33604 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 topontop 21449 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
75, 6syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
87adantr 481 . . . . . 6 ((𝜑𝑃𝑋) → 𝐽 ∈ Top)
9 eqid 2818 . . . . . . 7 𝐽 = 𝐽
109neii1 21642 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 𝐽)
118, 10sylan 580 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁 𝐽)
12 toponuni 21450 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
135, 12syl 17 . . . . . 6 (𝜑𝑋 = 𝐽)
1413ad2antrr 722 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑋 = 𝐽)
1511, 14sseqtrrd 4005 . . . 4 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → 𝑁𝑋)
16 neii2 21644 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦𝐽 ({𝑃} ⊆ 𝑦𝑦𝑁))
178, 16sylan 580 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ∃𝑦𝐽 ({𝑃} ⊆ 𝑦𝑦𝑁))
18 pweq 4538 . . . . . . . . . . 11 (𝑜 = 𝑦 → 𝒫 𝑜 = 𝒫 𝑦)
1918ineq2d 4186 . . . . . . . . . 10 (𝑜 = 𝑦 → ((𝐹𝑥) ∩ 𝒫 𝑜) = ((𝐹𝑥) ∩ 𝒫 𝑦))
2019neeq1d 3072 . . . . . . . . 9 (𝑜 = 𝑦 → (((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅))
2120raleqbi1dv 3401 . . . . . . . 8 (𝑜 = 𝑦 → (∀𝑥𝑜 ((𝐹𝑥) ∩ 𝒫 𝑜) ≠ ∅ ↔ ∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅))
2221, 4elrab2 3680 . . . . . . 7 (𝑦𝐽 ↔ (𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅))
23 simprrr 778 . . . . . . . . . . . . 13 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → 𝑦𝑁)
24 sspwb 5332 . . . . . . . . . . . . 13 (𝑦𝑁 ↔ 𝒫 𝑦 ⊆ 𝒫 𝑁)
2523, 24sylib 219 . . . . . . . . . . . 12 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → 𝒫 𝑦 ⊆ 𝒫 𝑁)
26 sslin 4208 . . . . . . . . . . . 12 (𝒫 𝑦 ⊆ 𝒫 𝑁 → ((𝐹𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹𝑃) ∩ 𝒫 𝑁))
2725, 26syl 17 . . . . . . . . . . 11 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → ((𝐹𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹𝑃) ∩ 𝒫 𝑁))
28 simprrl 777 . . . . . . . . . . . . 13 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → {𝑃} ⊆ 𝑦)
29 snssg 4709 . . . . . . . . . . . . . 14 (𝑃𝑋 → (𝑃𝑦 ↔ {𝑃} ⊆ 𝑦))
3029ad3antlr 727 . . . . . . . . . . . . 13 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → (𝑃𝑦 ↔ {𝑃} ⊆ 𝑦))
3128, 30mpbird 258 . . . . . . . . . . . 12 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → 𝑃𝑦)
32 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑥 = 𝑃 → (𝐹𝑥) = (𝐹𝑃))
3332ineq1d 4185 . . . . . . . . . . . . . 14 (𝑥 = 𝑃 → ((𝐹𝑥) ∩ 𝒫 𝑦) = ((𝐹𝑃) ∩ 𝒫 𝑦))
3433neeq1d 3072 . . . . . . . . . . . . 13 (𝑥 = 𝑃 → (((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ ↔ ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅))
3534rspcv 3615 . . . . . . . . . . . 12 (𝑃𝑦 → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅))
3631, 35syl 17 . . . . . . . . . . 11 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅))
37 ssn0 4351 . . . . . . . . . . 11 ((((𝐹𝑃) ∩ 𝒫 𝑦) ⊆ ((𝐹𝑃) ∩ 𝒫 𝑁) ∧ ((𝐹𝑃) ∩ 𝒫 𝑦) ≠ ∅) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)
3827, 36, 37syl6an 680 . . . . . . . . . 10 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ (𝑦 ∈ 𝒫 𝑋 ∧ ({𝑃} ⊆ 𝑦𝑦𝑁))) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅))
3938expr 457 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (({𝑃} ⊆ 𝑦𝑦𝑁) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
4039com23 86 . . . . . . . 8 ((((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) ∧ 𝑦 ∈ 𝒫 𝑋) → (∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅ → (({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
4140expimpd 454 . . . . . . 7 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝑦 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑦 ((𝐹𝑥) ∩ 𝒫 𝑦) ≠ ∅) → (({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
4222, 41syl5bi 243 . . . . . 6 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑦𝐽 → (({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
4342rexlimdv 3280 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (∃𝑦𝐽 ({𝑃} ⊆ 𝑦𝑦𝑁) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅))
4417, 43mpd 15 . . . 4 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)
4515, 44jca 512 . . 3 (((𝜑𝑃𝑋) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝑃})) → (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅))
4645ex 413 . 2 ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) → (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
47 n0 4307 . . . 4 (((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅ ↔ ∃𝑠 𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁))
48 elin 4166 . . . . . 6 (𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁) ↔ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))
49 simprl 767 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁𝑋)
5013ad2antrr 722 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋 = 𝐽)
5149, 50sseqtrd 4004 . . . . . . . 8 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 𝐽)
521ad2antrr 722 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑋𝑉)
532ad2antrr 722 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐹:𝑋⟶(𝒫 𝒫 𝑋 ∖ {∅}))
54 simpll 763 . . . . . . . . . 10 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝜑)
5554, 3sylan 580 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥) ∧ 𝑤 ∈ (𝐹𝑥))) → ((𝐹𝑥) ∩ 𝒫 (𝑣𝑤)) ≠ ∅)
56 neibastop1.5 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
5754, 56sylan 580 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → 𝑥𝑣)
58 neibastop1.6 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
5954, 58sylan 580 . . . . . . . . 9 ((((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) ∧ (𝑥𝑋𝑣 ∈ (𝐹𝑥))) → ∃𝑡 ∈ (𝐹𝑥)∀𝑦𝑡 ((𝐹𝑦) ∩ 𝒫 𝑣) ≠ ∅)
60 simplr 765 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃𝑋)
61 simprrl 777 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ (𝐹𝑃))
62 simprrr 778 . . . . . . . . . 10 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠 ∈ 𝒫 𝑁)
6362elpwid 4549 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑠𝑁)
64 fveq2 6663 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑥 → (𝐹𝑛) = (𝐹𝑥))
6564ineq1d 4185 . . . . . . . . . . . . . . 15 (𝑛 = 𝑥 → ((𝐹𝑛) ∩ 𝒫 𝑏) = ((𝐹𝑥) ∩ 𝒫 𝑏))
6665cbviunv 4956 . . . . . . . . . . . . . 14 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏) = 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑏)
67 pweq 4538 . . . . . . . . . . . . . . . 16 (𝑏 = 𝑧 → 𝒫 𝑏 = 𝒫 𝑧)
6867ineq2d 4186 . . . . . . . . . . . . . . 15 (𝑏 = 𝑧 → ((𝐹𝑥) ∩ 𝒫 𝑏) = ((𝐹𝑥) ∩ 𝒫 𝑧))
6968iuneq2d 4939 . . . . . . . . . . . . . 14 (𝑏 = 𝑧 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑏) = 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
7066, 69syl5eq 2865 . . . . . . . . . . . . 13 (𝑏 = 𝑧 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏) = 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
7170cbviunv 4956 . . . . . . . . . . . 12 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏) = 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)
7271mpteq2i 5149 . . . . . . . . . . 11 (𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧))
73 rdgeq1 8036 . . . . . . . . . . 11 ((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)) = (𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)) → rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑠}))
7472, 73ax-mp 5 . . . . . . . . . 10 rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) = rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑠})
7574reseq1i 5842 . . . . . . . . 9 (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω) = (rec((𝑎 ∈ V ↦ 𝑧𝑎 𝑥𝑋 ((𝐹𝑥) ∩ 𝒫 𝑧)), {𝑠}) ↾ ω)
76 pweq 4538 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → 𝒫 𝑔 = 𝒫 𝑓)
7776ineq2d 4186 . . . . . . . . . . . . 13 (𝑔 = 𝑓 → ((𝐹𝑤) ∩ 𝒫 𝑔) = ((𝐹𝑤) ∩ 𝒫 𝑓))
7877neeq1d 3072 . . . . . . . . . . . 12 (𝑔 = 𝑓 → (((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅))
7978cbvrexvw 3448 . . . . . . . . . . 11 (∃𝑔 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅)
80 fveq2 6663 . . . . . . . . . . . . . 14 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
8180ineq1d 4185 . . . . . . . . . . . . 13 (𝑤 = 𝑦 → ((𝐹𝑤) ∩ 𝒫 𝑓) = ((𝐹𝑦) ∩ 𝒫 𝑓))
8281neeq1d 3072 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
8382rexbidv 3294 . . . . . . . . . . 11 (𝑤 = 𝑦 → (∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑓) ≠ ∅ ↔ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
8479, 83syl5bb 284 . . . . . . . . . 10 (𝑤 = 𝑦 → (∃𝑔 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅ ↔ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅))
8584cbvrabv 3489 . . . . . . . . 9 {𝑤𝑋 ∣ ∃𝑔 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑤) ∩ 𝒫 𝑔) ≠ ∅} = {𝑦𝑋 ∣ ∃𝑓 ran (rec((𝑎 ∈ V ↦ 𝑏𝑎 𝑛𝑋 ((𝐹𝑛) ∩ 𝒫 𝑏)), {𝑠}) ↾ ω)((𝐹𝑦) ∩ 𝒫 𝑓) ≠ ∅}
8652, 53, 55, 4, 57, 59, 60, 49, 61, 63, 75, 85neibastop2lem 33605 . . . . . . . 8 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))
877ad2antrr 722 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝐽 ∈ Top)
8860, 50eleqtrd 2912 . . . . . . . . 9 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑃 𝐽)
899isneip 21641 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑃 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))))
9087, 88, 89syl2anc 584 . . . . . . . 8 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 𝐽 ∧ ∃𝑢𝐽 (𝑃𝑢𝑢𝑁))))
9151, 86, 90mpbir2and 709 . . . . . . 7 (((𝜑𝑃𝑋) ∧ (𝑁𝑋 ∧ (𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁))) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃}))
9291expr 457 . . . . . 6 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → ((𝑠 ∈ (𝐹𝑃) ∧ 𝑠 ∈ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9348, 92syl5bi 243 . . . . 5 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → (𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9493exlimdv 1925 . . . 4 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → (∃𝑠 𝑠 ∈ ((𝐹𝑃) ∩ 𝒫 𝑁) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9547, 94syl5bi 243 . . 3 (((𝜑𝑃𝑋) ∧ 𝑁𝑋) → (((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅ → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9695expimpd 454 . 2 ((𝜑𝑃𝑋) → ((𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅) → 𝑁 ∈ ((nei‘𝐽)‘{𝑃})))
9746, 96impbid 213 1 ((𝜑𝑃𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁𝑋 ∧ ((𝐹𝑃) ∩ 𝒫 𝑁) ≠ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wex 1771  wcel 2105  wne 3013  wral 3135  wrex 3136  {crab 3139  Vcvv 3492  cdif 3930  cin 3932  wss 3933  c0 4288  𝒫 cpw 4535  {csn 4557   cuni 4830   ciun 4910  cmpt 5137  ran crn 5549  cres 5550  wf 6344  cfv 6348  ωcom 7569  reccrdg 8034  Topctop 21429  TopOnctopon 21446  neicnei 21633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-top 21430  df-topon 21447  df-nei 21634
This theorem is referenced by:  neibastop3  33607
  Copyright terms: Public domain W3C validator